The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Different nicotinic acetylcholine receptor subtypes mediating striatal and prefrontal cortical [3H]dopamine release.

Different nicotinic acetylcholine receptor subtypes appear to modulate dopamine release from the striatum and prefrontal cortex. In this study a combination of subtype-selective antagonists and agonists were used to extensively characterize the nAChRs involved in dopamine release from slice preparations of these two brain regions. alpha-conotoxin-MII inhibited nicotine-evoked [3H]dopamine (DA) release from striatum by 45%, but did not affect cortical dopamine release. Neither methyllycaconitine, alpha-bungarotoxin, nor alpha-conotoxin-ImI affected nicotine-evoked [3H]DA release from either striatum or prefrontal cortex. MG 624, a novel selective nAChR antagonist, inhibited cortical [3H]DA by 53%, but had no effect on striatal release. Compared to nicotine, (+/-)-UB-165 showed less efficacy with respect to dopamine release from striatum, and had no effect on cortical dopamine release. (+/-)-UB-165-evoked striatal dopamine release was completely blocked by mecamylamine, partially blocked (up to 55%) by alpha-conotoxin-MII, and unaffected by methyllycaconitine or alpha-conotoxin-ImI. alpha4beta2* and alpha6beta2beta3* nAChRs appear to play a role in striatal dopamine release, whereas alpha4beta2* nAChRs modulate release from prefrontal cortex. alpha7* nAChRs do not appear to play a role in nAChR-mediated dopamine release from either brain region.[1]

References

 
WikiGenes - Universities