The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Prefrontal Cortex

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Prefrontal Cortex


Psychiatry related information on Prefrontal Cortex


High impact information on Prefrontal Cortex

  • Among the regions of the brain with the greatest reductions in glucose metabolism were the premotor cortex and the superior prefrontal cortex [11].
  • Here we examine the regulation of striatal dopamine by the dorsolateral prefrontal cortex, in adult monkeys that had had either neonatal or adult lesions of the medial-temporal lobe and in normal animals [12].
  • This reduction was related to the severity of the negative symptoms (for instance, emotional withdrawal) and to poor performance in the Wisconsin Card Sorting Test. We propose that dysfunction of D1R signalling in the prefrontal cortex may contribute to the negative symptoms and cognitive deficits seen in schizophrenia [13].
  • Using positron emission tomographic (PET) images of cerebral blood flow and rate of glucose metabolism to measure brain activity, we have now localized an area of abnormally decreased activity in the prefrontal cortex ventral to the genu of the corpus callosum in both familial bipolar depressives and familial unipolar depressives [14].
  • Calcyon localizes to dendritic spines of D1 receptor-expressing pyramidal cells in prefrontal cortex [15].

Chemical compound and disease context of Prefrontal Cortex


Biological context of Prefrontal Cortex


Anatomical context of Prefrontal Cortex


Associations of Prefrontal Cortex with chemical compounds

  • Monkeys treated with phencyclidine twice a day for 14 days displayed performance deficits on a task that was sensitive to prefrontal cortex function; the deficits were ameliorated by the atypical antipsychotic drug clozapine [21].
  • The tight within-patient coupling of these values, with decreased PFC activation predicting exaggerated striatal 6-fluorodopa uptake, supports the hypothesis that prefrontal cortex dysfunction may lead to dopaminergic transmission abnormalities [31].
  • Altered editing of serotonin 2C receptor pre-mRNA in the prefrontal cortex of depressed suicide victims [32].
  • Here, we report that the expression of AGS3, which binds to GialphaGDP and inhibits GDP dissociation, was upregulated in the prefrontal cortex (PFC) during late withdrawal from repeated cocaine administration [33].
  • This article aims to review research in nonhuman primates demonstrating that norepinephrine can enhance the cognitive functioning of the prefrontal cortex through actions at alpha 2 A-adrenergic receptors postjunctional to noradrenergic terminals [34].

Gene context of Prefrontal Cortex


Analytical, diagnostic and therapeutic context of Prefrontal Cortex


  1. Selective modulation of excitatory and inhibitory microcircuits by dopamine. Gao, W.J., Goldman-Rakic, P.S. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  2. Neuroimaging of dyskinesia. Brooks, D.J., Piccini, P., Turjanski, N., Samuel, M. Ann. Neurol. (2000) [Pubmed]
  3. Frontocortical 5-HT4 receptors exert positive feedback on serotonergic activity: viral transfections, subacute and chronic treatments with 5-HT4 agonists. Lucas, G., Compan, V., Charnay, Y., Neve, R.L., Nestler, E.J., Bockaert, J., Barrot, M., Debonnel, G. Biol. Psychiatry (2005) [Pubmed]
  4. Hypotension-induced dopamine release in prefrontal cortex is mediated by local glutamatergic projections at the level of nerve terminals. Kawahara, Y., Kawahara, H., Westerink, B.H. J. Neurochem. (2002) [Pubmed]
  5. Structural brain pathology in schizophrenia revisited. Prefrontal cortex pathology is inversely correlated with cerebrospinal fluid levels of homovanillic acid. Doran, A.R., Boronow, J., Weinberger, D.R., Wolkowitz, O.M., Breier, A., Pickar, D. Neuropsychopharmacology (1987) [Pubmed]
  6. Brain self-stimulation: direct evidence for the involvement of dopamine in the prefrontal cortex. Mora, F., Myers, R.D. Science (1977) [Pubmed]
  7. Localization of amyloid beta protein messenger RNA in brains from patients with Alzheimer's disease. Bahmanyar, S., Higgins, G.A., Goldgaber, D., Lewis, D.A., Morrison, J.H., Wilson, M.C., Shankar, S.K., Gajdusek, D.C. Science (1987) [Pubmed]
  8. Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. Heckers, S., Stone, D., Walsh, J., Shick, J., Koul, P., Benes, F.M. Arch. Gen. Psychiatry (2002) [Pubmed]
  9. Selective abnormalities of prefrontal serotonergic receptors in schizophrenia. A postmortem study. Laruelle, M., Abi-Dargham, A., Casanova, M.F., Toti, R., Weinberger, D.R., Kleinman, J.E. Arch. Gen. Psychiatry (1993) [Pubmed]
  10. Importance of the noradrenaline-dopamine coupling in the locomotor activating effects of D-amphetamine. Darracq, L., Blanc, G., Glowinski, J., Tassin, J.P. J. Neurosci. (1998) [Pubmed]
  11. Cerebral glucose metabolism in adults with hyperactivity of childhood onset. Zametkin, A.J., Nordahl, T.E., Gross, M., King, A.C., Semple, W.E., Rumsey, J., Hamburger, S., Cohen, R.M. N. Engl. J. Med. (1990) [Pubmed]
  12. Neonatal lesions of the medial temporal lobe disrupt prefrontal cortical regulation of striatal dopamine. Saunders, R.C., Kolachana, B.S., Bachevalier, J., Weinberger, D.R. Nature (1998) [Pubmed]
  13. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Okubo, Y., Suhara, T., Suzuki, K., Kobayashi, K., Inoue, O., Terasaki, O., Someya, Y., Sassa, T., Sudo, Y., Matsushima, E., Iyo, M., Tateno, Y., Toru, M. Nature (1997) [Pubmed]
  14. Subgenual prefrontal cortex abnormalities in mood disorders. Drevets, W.C., Price, J.L., Simpson, J.R., Todd, R.D., Reich, T., Vannier, M., Raichle, M.E. Nature (1997) [Pubmed]
  15. Dual signaling regulated by calcyon, a D1 dopamine receptor interacting protein. Lezcano, N., Mrzljak, L., Eubanks, S., Levenson, R., Goldman-Rakic, P., Bergson, C. Science (2000) [Pubmed]
  16. Working memory deficits and levels of N-acetylaspartate in patients with schizophreniform disorder. Bertolino, A., Sciota, D., Brudaglio, F., Altamura, M., Blasi, G., Bellomo, A., Antonucci, N., Callicott, J.H., Goldberg, T.E., Scarabino, T., Weinberger, D.R., Nardini, M. The American journal of psychiatry. (2003) [Pubmed]
  17. Decreased benzodiazepine receptor binding in prefrontal cortex in combat-related posttraumatic stress disorder. Bremner, J.D., Innis, R.B., Southwick, S.M., Staib, L., Zoghbi, S., Charney, D.S. The American journal of psychiatry. (2000) [Pubmed]
  18. Dorsolateral prefrontal cortical pathology in generalized anxiety disorder: a proton magnetic resonance spectroscopic imaging study. Mathew, S.J., Mao, X., Coplan, J.D., Smith, E.L., Sackeim, H.A., Gorman, J.M., Shungu, D.C. The American journal of psychiatry. (2004) [Pubmed]
  19. Fluoxetine administration potentiates the effect of olanzapine on locus coeruleus neuronal activity. Seager, M.A., Huff, K.D., Barth, V.N., Phebus, L.A., Rasmussen, K. Biol. Psychiatry (2004) [Pubmed]
  20. A fenfluramine-activated FDG-PET study of borderline personality disorder. Soloff, P.H., Meltzer, C.C., Greer, P.J., Constantine, D., Kelly, T.M. Biol. Psychiatry (2000) [Pubmed]
  21. Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Jentsch, J.D., Redmond, D.E., Elsworth, J.D., Taylor, J.R., Youngren, K.D., Roth, R.H. Science (1997) [Pubmed]
  22. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Akbarian, S., Kim, J.J., Potkin, S.G., Hagman, J.O., Tafazzoli, A., Bunney, W.E., Jones, E.G. Arch. Gen. Psychiatry (1995) [Pubmed]
  23. Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. II. Role of neuroleptic treatment, attention, and mental effort. Berman, K.F., Zec, R.F., Weinberger, D.R. Arch. Gen. Psychiatry (1986) [Pubmed]
  24. Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Koh, P.O., Undie, A.S., Kabbani, N., Levenson, R., Goldman-Rakic, P.S., Lidow, M.S. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  25. Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac). Svenningsson, P., Tzavara, E.T., Witkin, J.M., Fienberg, A.A., Nomikos, G.G., Greengard, P. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  26. Proglumide: selective antagonism of excitatory effects of cholecystokinin in central nervous system. Chiodo, L.A., Bunney, B.S. Science (1983) [Pubmed]
  27. Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Kalivas, P.W., Volkow, N., Seamans, J. Neuron (2005) [Pubmed]
  28. Acute effects of cocaine on human brain activity and emotion. Breiter, H.C., Gollub, R.L., Weisskoff, R.M., Kennedy, D.N., Makris, N., Berke, J.D., Goodman, J.M., Kantor, H.L., Gastfriend, D.R., Riorden, J.P., Mathew, R.T., Rosen, B.R., Hyman, S.E. Neuron (1997) [Pubmed]
  29. Ventromedial prefrontal cortex and amygdala dysfunction during an anger induction positron emission tomography study in patients with major depressive disorder with anger attacks. Dougherty, D.D., Rauch, S.L., Deckersbach, T., Marci, C., Loh, R., Shin, L.M., Alpert, N.M., Fischman, A.J., Fava, M. Arch. Gen. Psychiatry (2004) [Pubmed]
  30. Acquiring and inhibiting prepotent responses in schizophrenia: event-related brain potentials and functional magnetic resonance imaging. Ford, J.M., Gray, M., Whitfield, S.L., Turken, A.U., Glover, G., Faustman, W.O., Mathalon, D.H. Arch. Gen. Psychiatry (2004) [Pubmed]
  31. Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Meyer-Lindenberg, A., Miletich, R.S., Kohn, P.D., Esposito, G., Carson, R.E., Quarantelli, M., Weinberger, D.R., Berman, K.F. Nat. Neurosci. (2002) [Pubmed]
  32. Altered editing of serotonin 2C receptor pre-mRNA in the prefrontal cortex of depressed suicide victims. Gurevich, I., Tamir, H., Arango, V., Dwork, A.J., Mann, J.J., Schmauss, C. Neuron (2002) [Pubmed]
  33. Activator of G protein signaling 3: a gatekeeper of cocaine sensitization and drug seeking. Bowers, M.S., McFarland, K., Lake, R.W., Peterson, Y.K., Lapish, C.C., Gregory, M.L., Lanier, S.M., Kalivas, P.W. Neuron (2004) [Pubmed]
  34. The contribution of alpha 2-noradrenergic mechanisms of prefrontal cortical cognitive function. Potential significance for attention-deficit hyperactivity disorder. Arnsten, A.F., Steere, J.C., Hunt, R.D. Arch. Gen. Psychiatry (1996) [Pubmed]
  35. Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Zhao, M.G., Toyoda, H., Lee, Y.S., Wu, L.J., Ko, S.W., Zhang, X.H., Jia, Y., Shum, F., Xu, H., Li, B.M., Kaang, B.K., Zhuo, M. Neuron (2005) [Pubmed]
  36. Reelin and glutamic acid decarboxylase67 promoter remodeling in an epigenetic methionine-induced mouse model of schizophrenia. Dong, E., Agis-Balboa, R.C., Simonini, M.V., Grayson, D.R., Costa, E., Guidotti, A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  37. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Egan, M.F., Straub, R.E., Goldberg, T.E., Yakub, I., Callicott, J.H., Hariri, A.R., Mattay, V.S., Bertolino, A., Hyde, T.M., Shannon-Weickert, C., Akil, M., Crook, J., Vakkalanka, R.K., Balkissoon, R., Gibbs, R.A., Kleinman, J.E., Weinberger, D.R. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  38. Frontostriatal deficits in fragile X syndrome: relation to FMR1 gene expression. Menon, V., Leroux, J., White, C.D., Reiss, A.L. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  39. Expression of DISC1 binding partners is reduced in schizophrenia and associated with DISC1 SNPs. Lipska, B.K., Peters, T., Hyde, T.M., Halim, N., Horowitz, C., Mitkus, S., Weickert, C.S., Matsumoto, M., Sawa, A., Straub, R.E., Vakkalanka, R., Herman, M.M., Weinberger, D.R., Kleinman, J.E. Hum. Mol. Genet. (2006) [Pubmed]
  40. Electrical stimulation of the prefrontal cortex increases cholecystokinin, glutamate, and dopamine release in the nucleus accumbens: an in vivo microdialysis study in freely moving rats. You, Z.B., Tzschentke, T.M., Brodin, E., Wise, R.A. J. Neurosci. (1998) [Pubmed]
  41. Circling behavior following unilateral microinjections of cocaine into the medial prefrontal cortex: dopaminergic or local anesthetic effect? Morency, M.A., Stewart, R.J., Beninger, R.J. J. Neurosci. (1987) [Pubmed]
  42. Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors. Taber, M.T., Fibiger, H.C. J. Neurosci. (1995) [Pubmed]
  43. Cellular distribution of dopamine D1 and D2 receptors in rat medial prefrontal cortex. Vincent, S.L., Khan, Y., Benes, F.M. J. Neurosci. (1993) [Pubmed]
  44. Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Bolla, K.I., Eldreth, D.A., London, E.D., Kiehl, K.A., Mouratidis, M., Contoreggi, C., Matochik, J.A., Kurian, V., Cadet, J.L., Kimes, A.S., Funderburk, F.R., Ernst, M. Neuroimage (2003) [Pubmed]
WikiGenes - Universities