The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Exonic splicing enhancers in fission yeast: functional conservation demonstrates an early evolutionary origin.

Discrete sequence elements known as exonic splicing enhancers (ESEs) have been shown to influence both the efficiency of splicing and the profile of mature mRNAs in multicellular eukaryotes. While the existence of ESEs has not been demonstrated previously in unicellular eukaryotes, the factors known to recognize these elements and mediate their communication with the core splicing machinery are conserved and essential in the fission yeast Schizosaccharomyces pombe. Here, we provide evidence that ESE function is conserved through evolution by demonstrating that three exonic splicing enhancers derived from vertebrates (chicken ASLV, mouse IgM, and human cTNT) promote splicing of two distinct S. pombe pre-messenger RNAs (pre-mRNAs). Second, as in extracts from mammalian cells, ESE function in S. pombe is compromised by mutations and increased distance from the 3'-splice site. Third, three-hybrid analyses indicate that the essential SR (serine/arginine-rich) protein Srp2p, but not the dispensable Srp1p, binds specifically to both native and heterologous purine-rich elements; thus, Srp2p is the likely mediator of ESE function in fission yeast. Finally, we have identified five natural purine-rich elements from S. pombe that promote splicing of our reporter pre-mRNAs. Taken together, these results provide strong evidence that the genesis of ESE-mediated splicing occurred early in eukaryotic evolution.[1]

References

  1. Exonic splicing enhancers in fission yeast: functional conservation demonstrates an early evolutionary origin. Webb, C.J., Romfo, C.M., van Heeckeren, W.J., Wise, J.A. Genes Dev. (2005) [Pubmed]
 
WikiGenes - Universities