The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Decline in caveolin-1 expression and scaffolding of G protein receptor kinase-2 with age in Fischer 344 aortic vascular smooth muscle.

Beta-adrenergic receptor (beta-AR)-mediated vasorelaxation declines with age in humans and animal models. This is not caused by changes in expression of beta-AR, G alpha s, adenylyl cyclase, or protein kinase A but is associated with decreased cAMP production. Expression and activity of G protein receptor kinase-2 ( GRK-2), which phosphorylates and desensitizes the beta-AR, increases with age in rat aortic tissue. Caveolin scaffolds the beta-AR, GRK, and other proteins within "signaling pockets" and inhibits GRK activity when bound. We questioned the effect of age on caveolin-1 expression and interaction between caveolin-1 and GRK-2 in vascular smooth muscle (VSM) isolated from 2-, 6-, 12-, and 24-mo-old male Fischer 344 rat aorta. Western blot analysis found expression of caveolin-1 declined with age (6-, 12- and 24-mo-old rat aortas express 92, 50, and 42% of 2-mo-old rat aortas, respectively). Results from density-buoyancy analysis showed a lower percentage of GRK in caveolin-1-specific fractions with age (6-, 12- and 24-mo-old rat aortas express 95, 56, and 12% of 2-mo-old rat aortas, respectively). Coimmunoprecipitation confirmed this finding; density of GRK in caveolin-1 immunoprecipitates was 97, 30, and 21% of 2-mo-old aortas compared with 6-, 12- and 24-mo-old animals, respectively. Immunohistocytochemistry and confocal microscopy confirmed that GRK-2 and caveolin-1 colocalize in VSM. These results suggest that in nonoverexpressed, intact tissue, the decline in beta-AR-mediated vasorelaxation may be caused by both a reduction in caveolin-1 expression and a reduction in binding of GRK-2 by caveolin-1. This could lead to an increase in the fraction of free GRK-2, which could phosphorylate and desensitize the beta-AR.[1]

References

 
WikiGenes - Universities