Characterization of flavonoids by aluminum complexation and collisionally activated dissociation.
Aluminum complexes of the type [Al(III) (flavonoid-H)2]+ are generated by electrospray ionization in order to allow differentiation of isomeric flavonoids by tandem mass spectrometry. The dominant species observed from the aluminum complexation reaction has a 1:2 aluminum(III):flavonoid stoichiometry. Differentiation of 18 flavonoids constituting seven isomeric series was achieved based on the collisionally activated dissociation patterns of the aluminum complexes. Characteristic fragmentation pathways allow identification of the site of glycosylation, the type of saccharide (rutinose versus neohesperidose) and the type of bond between the C-2 and C-3 atoms (thus distinguishing flavanones from flavonols and flavones). Two stable coordination geometries of the aluminum complex of apigenin were identified. The non-planar structure with a plane-angle of nearly 90 degrees is 25.3 kcal mol-1 more favorable than the planar structure. The conformations of the complexes, which involve multiple interactions between the aglycone and disaccharide portions of the flavonoid with the metal ion, are significantly different for the isomeric flavonoids.[1]References
- Characterization of flavonoids by aluminum complexation and collisionally activated dissociation. Zhang, J., Wang, J., Brodbelt, J.S. Journal of mass spectrometry : JMS. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg