The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Nebivolol decreases oxidative stress in essential hypertensive patients and increases nitric oxide by reducing its oxidative inactivation.

OBJECTIVE: To obtain further insight into the mechanism underlying the vasodilator effect of nebivolol. Since oxidative inactivation of nitric oxide (NO) is regarded as an important cause of its decreased biological activity, we studied (1) the effect of nebivolol on some oxidative parameters in essential hypertensive patients; (2) the effect of plasma of nebivolol-treated patients on reactive oxygen species production and NO availability in endothelial cells. METHODS: A total of 20 healthy subjects and 20 matched essential hypertensive patients treated with atenolol or nebivolol according to a double-blind, randomized design participated in the study. We measured low-density lipoprotein (LDL) and plasma hydroperoxides, 8-isoprostanes, oxidized LDL, susceptibility of LDL to oxidation (lag phase) and LDL vitamin E and the effect of plasma of nebivolol- and atenolol-treated patients on reactive oxygen species production and NO availability in endothelial cells exposed to oxidative stress. RESULTS: In hypertensive patients, nebivolol and atenolol significantly reduced blood pressure values after 4 weeks of treatment. Plasma and LDL hydroperoxides, plasma 8-isoprostanes, plasma ox-LDL and LDL lag phase were significantly improved only in the patients receiving nebivolol compared with the atenolol group. Similarly there was a reduction of reactive oxygen species (ROS) and O2*- concentration in endothelial cells exposed to oxidative stress after incubation of the cells with plasma of the patients enrolled in the trial only in the patients receiving nebivolol compared to atenolol group. Furthermore, the reduction of basal and stimulated NO induced by oxidative stress in endothelial cells was significantly lower in the patients receiving nebivolol compared to atenolol group. CONCLUSIONS: The findings of the present study indicate that nebivolol, through its antioxidant properties, increases NO also by decreasing its oxidative inactivation.[1]

References

  1. Nebivolol decreases oxidative stress in essential hypertensive patients and increases nitric oxide by reducing its oxidative inactivation. Fratta Pasini, A., Garbin, U., Nava, M.C., Stranieri, C., Davoli, A., Sawamura, T., Lo Cascio, V., Cominacini, L. J. Hypertens. (2005) [Pubmed]
 
WikiGenes - Universities