The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Retinoic acid down-regulates Tbx1 expression in vivo and in vitro.

Both Tbx1 and retinoic acid (RA) are key players in embryonic pharyngeal development; loss of Tbx1 produces DiGeorge syndrome-like phenotypes in mouse models as does disruption of retinoic acid homeostasis. We have demonstrated that perturbation of retinoic acid levels in the avian embryo produces altered Tbx1 expression. In vitamin A-deficient quails, which lack endogenous retinoic acid, Tbx1 expression patterns were disrupted early in development and expression was subsequently lost in all tissues. "Gain-of-function" experiments where RA-soaked beads were grafted into the pharyngeal region produced localized down-regulation of Tbx1 expression. In these embryos, analysis of Shh and Foxa2, upstream control factors for Tbx1, suggested that the effect of RA was independent of this regulatory pathway. Real-time polymerase chain reaction analysis of retinoic acid-treated P19 cells showed a dose-dependent repression of Tbx1 by retinoic acid. Repression of Tbx1 transcript levels was first evident after 8-12 hr in culture in the presence of retinoic acid, and to achieve the highest levels of repression, de novo protein synthesis was required.[1]

References

  1. Retinoic acid down-regulates Tbx1 expression in vivo and in vitro. Roberts, C., Ivins, S.M., James, C.T., Scambler, P.J. Dev. Dyn. (2005) [Pubmed]
 
WikiGenes - Universities