The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Importance of carbohydrate positioning in the recognition of mutated CPY for ER-associated degradation.

In the endoplasmic reticulum (ER), N-linked glycans (N-glycans) function as signals to recruit the lectin chaperones involved in protein folding, quality control and ER-associated degradation. We undertook a systematic study of the four N-glycans of mutated carboxypeptidase yscY (CPY*) to determine whether there are positional differences between the glycans in ER-associated degradation. We constructed hypoglycosylated CPY* variants containing one, two or three N-glycans in various combinations and studied their degradation kinetics. We found that the four carbohydrate chains on CPY* are not equal in their signaling function: presence of the Asn368-linked glycan is necessary and sufficient for efficient degradation of CPY*. We also analysed the involvement of the ER lectins Htm1p and Cne1p (yeast calnexin) in the glycan-based recognition process with respect to number and position of N-glycans. We observed that Htm1p function depends on the presence of N-glycans in general but that there is no positional preference for a particular glycan. Cne1p, however, is selective with respect to substrate, and participates in the quality control only of some underglycosylated variants. For cases in which both lectins are involved, Cne1p and Htm1p play competing roles in targeting the substrate for degradation: loss of Cne1p accelerates degradation, whereas loss of Htm1p stabilizes the substrate.[1]


WikiGenes - Universities