Elp1p, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation.
The activation of Rab GTPases is a critical focal point of membrane trafficking events in eukaryotic cells; however, the cellular mechanisms that spatially and temporally regulate this process are poorly understood. Here, we identify a null allele of ELP1 as a suppressor of a mutant in a Rab guanine nucleotide exchange factor Sec2p. Elp1p was previously thought to be involved in transcription elongation as part of the Elongator complex. We show that elp1Delta suppression of sec2(ts) is not a result of reduced transcriptional elongation and that Elp1p physically associates with Sec2p. The Sec2p interaction domain of Elp1p is necessary for both Elp1p function and for the polarized localization of Sec2p. Mutations in human Elp1p (IKAP) are a known cause of familial dysautonomia (FD). Our results raise the possibility that regulation of polarized exocytosis is an evolutionarily conserved function of the entire Elongator complex and that FD results from a dysregulation of neuronal exocytosis.[1]References
- Elp1p, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation. Rahl, P.B., Chen, C.Z., Collins, R.N. Mol. Cell (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg