The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

IKI3  -  Elongator subunit IKI3

Saccharomyces cerevisiae S288c

Synonyms: ELP1, Elongator complex protein 1, Gamma-toxin target 1, KTI7, L3502.7, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of IKI3


High impact information on IKI3


Biological context of IKI3


Associations of IKI3 with chemical compounds

  • An early step in wobble uridine tRNA modification requires the Elongator complex [10].
  • Furthermore, the plant Elongator complex is genetically positioned in the process of RNAPII-mediated transcription downstream of Mediator [5].
  • Iki3p may contain a transmembrane domain near the NH2-terminal region (97-113 residues in a total of 1349 amino acids) [7].

Other interactions of IKI3

  • Purification of Elongator in higher salt concentrations served to demonstrate that the complex could be separated into two subcomplexes: one consisted of Elp1, -2, and -3, and the other consisted of Elp4, -5, and -6 [11].
  • Despite being dispensable for Tot4-Tot2 interaction, the extreme C-terminus of Tot1p may play a role in TOT/Elongator function, as its truncation confers zymocin resistance [12].
  • Transfer RNA immunoprecipitation experiments showed that the Elp1 and Elp3 proteins specifically coprecipitate a tRNA susceptible to formation of an mcm5 side chain, indicating a direct role of Elongator in tRNA modification [10].
  • Consistently, Sit4 and Tot4 mutually oppose Tot1 de-/phosphorylation, which is dispensable for integrity of holo-Elongator but crucial for the TOT-dependent G1 block by zymocin [8].
  • Phosphorylation of its largest subunit Tot1 (Elp1) is supported by Kti11, an Elongator-interactor essential for zymocin action [8].


  1. Elp1p, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation. Rahl, P.B., Chen, C.Z., Collins, R.N. Mol. Cell (2005) [Pubmed]
  2. KTI11 and KTI13, Saccharomyces cerevisiae genes controlling sensitivity to G1 arrest induced by Kluyveromyces lactis zymocin. Fichtner, L., Schaffrath, R. Mol. Microbiol. (2002) [Pubmed]
  3. Elevated Levels of Two tRNA Species Bypass the Requirement for Elongator Complex in Transcription and Exocytosis. Esberg, A., Huang, B., Johansson, M.J., Bystr??m, A.S. Mol. Cell (2006) [Pubmed]
  4. Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Otero, G., Fellows, J., Li, Y., de Bizemont, T., Dirac, A.M., Gustafsson, C.M., Erdjument-Bromage, H., Tempst, P., Svejstrup, J.Q. Mol. Cell (1999) [Pubmed]
  5. The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth. Nelissen, H., Fleury, D., Bruno, L., Robles, P., De Veylder, L., Traas, J., Micol, J.L., Van Montagu, M., Inzé, D., Van Lijsebettens, M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  6. Subunit communications crucial for the functional integrity of the yeast RNA polymerase II elongator (gamma-toxin target (TOT)) complex. Frohloff, F., Jablonowski, D., Fichtner, L., Schaffrath, R. J. Biol. Chem. (2003) [Pubmed]
  7. Characterization of IKI1 and IKI3 genes conferring pGKL killer sensitivity on Saccharomyces cerevisiae. Yajima, H., Tokunaga, M., Nakayama-Murayama, A., Hishinuma, F. Biosci. Biotechnol. Biochem. (1997) [Pubmed]
  8. The yeast elongator histone acetylase requires Sit4-dependent dephosphorylation for toxin-target capacity. Jablonowski, D., Fichtner, L., Stark, M.J., Schaffrath, R. Mol. Biol. Cell (2004) [Pubmed]
  9. Isolation and genetic characterization of pGKL killer-insensitive mutants (iki) from Saccharomyces cerevisiae. Kishida, M., Tokunaga, M., Katayose, Y., Yajima, H., Kawamura-Watabe, A., Hishinuma, F. Biosci. Biotechnol. Biochem. (1996) [Pubmed]
  10. An early step in wobble uridine tRNA modification requires the Elongator complex. Huang, B., Johansson, M.J., Byström, A.S. RNA (2005) [Pubmed]
  11. Characterization of a six-subunit holo-elongator complex required for the regulated expression of a group of genes in Saccharomyces cerevisiae. Krogan, N.J., Greenblatt, J.F. Mol. Cell. Biol. (2001) [Pubmed]
  12. Protein interactions within Saccharomyces cerevisiae Elongator, a complex essential for Kluyveromyces lactis zymocicity. Fichtner, L., Frohloff, F., Jablonowski, D., Stark, M.J., Schaffrath, R. Mol. Microbiol. (2002) [Pubmed]
WikiGenes - Universities