The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.).

The effect of the treatment of chitosan at various concentrations (0.01%, 0.05%, 0.1%, 0.5%, and 1%) upon sweet basil (Ocimum basilicum L.) before seeding and transplanting was investigated in aspects of the amount of phenolic and terpenic compounds, antioxidant activity, and growth of the basil, as well as the phenylalanine ammonia lyase (PAL) activity. The total amount of the phenolic and terpenic compounds increased after the chitosan treatment. Especially, the amounts of rosmarinic acid (RA) and eugenol increased 2.5 times and 2 times, respectively, by 0.1% and 0.5% chitosan treatment. Due to the significant induction of phenolic compounds, especially RA, the corresponding antioxidant activity assayed by the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging test increased at least 3.5-fold. Also, the activity of PAL, a key regulatory enzyme for the phenylpropanoid pathway, increased 32 times by 0.5% chitosan solution. Moreover, after the elicitor chitosan treatment, the growth in terms of the weight and height of the sweet basil significantly increased about 17% and 12%, respectively. Our study demonstrates that an elicitor such as chitosan can effectively induce phytochemicals in plants, which might be another alternative and effective means instead of genetic modification.[1]

References

  1. Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). Kim, H.J., Chen, F., Wang, X., Rajapakse, N.C. J. Agric. Food Chem. (2005) [Pubmed]
 
WikiGenes - Universities