The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Grb10 and Grb14: enigmatic regulators of insulin action--and more?

The Grb proteins (growth factor receptor-bound proteins) Grb7, Grb10 and Grb14 constitute a family of structurally related multidomain adapters with diverse cellular functions. Grb10 and Grb14, in particular, have been implicated in the regulation of insulin receptor signalling, whereas Grb7 appears predominantly to be involved in focal adhesion kinase-mediated cell migration. However, at least in vitro, these adapters can bind to a variety of growth factor receptors. The highest identity within the Grb7/10/14 family occurs in the C-terminal SH2 (Src homology 2) domain, which mediates binding to activated receptors. A second well-conserved binding domain, BPS [between the PH ( pleckstrin homology) and SH2 domains], can act to enhance binding to the IR (insulin receptor). Consistent with a putative adapter function, some non-receptor-binding partners, including protein kinases, have also been identified. Grb10 and Grb14 are widely, but not uniformly, expressed in mammalian tissues, and there are various isoforms of Grb10. Binding of Grb10 or Grb14 to autophosphorylated IR in vitro inhibits tyrosine kinase activity towards other substrates, but studies on cultured cell lines have been conflicting as to whether Grb10 plays a positive or negative role in insulin signalling. Recent gene knockouts in mice have established that Grb10 and Grb14 act as inhibitors of intracellular signalling pathways regulating growth and metabolism, although the phenotypes of the two knockouts are distinct. Ablation of Grb14 enhances insulin action in liver and skeletal muscle and improves whole-body tolerance, with little effect on embryonic growth. Ablation of Grb10 results in disproportionate overgrowth of the embryo and placenta involving unidentified pathways, and also impacts on hepatic glycogen synthesis, and probably on glucose homoeostasis. This review discusses the extent to which previous studies in vitro can account for the observed phenotype of knockout animals, and considers evidence that aberrant function of Grb10 or Grb14 may contribute to disorders of growth and metabolism in humans.[1]


  1. Grb10 and Grb14: enigmatic regulators of insulin action--and more? Holt, L.J., Siddle, K. Biochem. J. (2005) [Pubmed]
WikiGenes - Universities