The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Gly-103 in the N-terminal domain of Saccharomyces cerevisiae Rad51 protein is critical for DNA binding.

Rad51 is a homolog of the bacterial RecA protein and is central for recombination in eukaryotes performing homology search and DNA strand exchange. Rad51 and RecA share a core ATPase domain that is structurally similar to the ATPase domains of helicases and the F1 ATPase. Rad51 has an additional N-terminal domain, whereas RecA protein has an additional C-terminal domain. Here we show that glycine 103 in the N-terminal domain of Saccharomyces cerevisiae Rad51 is important for binding to single-stranded and duplex DNA. The Rad51-G103E mutant protein is deficient in DNA strand exchange and ATPase activity due to a primary DNA binding defect. The N-terminal domain of Rad51 is connected to the ATPase core through an extended elbow linker that ensures flexibility of the N-terminal domain. Molecular modeling of the Rad51-G103E mutant protein shows that the negatively charged glutamate residue lies on the surface of the N-terminal domain facing a positively charged patch composed of Arg-260, His-302, and Lys-305 on the ATPase core domain. A possible structural explanation for the DNA binding defect is that a charge interaction between Glu-103 and the positive patch restricts the flexibility of the N-terminal domain. Rad51-G103E was identified in a screen for Rad51 interaction-deficient mutants and was shown to ablate the Rad54 interaction in two-hybrid assays (Krejci, L., Damborsky, J., Thomsen, B., Duno, M., and Bendixen, C. (2001) Mol. Cell. Biol. 21, 966-976). Surprisingly, we found that the physical interaction of Rad51-G103E with Rad54 was not affected. Our data suggest that the two-hybrid interaction defect was an indirect consequence of the DNA binding defect.[1]


  1. Gly-103 in the N-terminal domain of Saccharomyces cerevisiae Rad51 protein is critical for DNA binding. Zhang, X.P., Lee, K.I., Solinger, J.A., Kiianitsa, K., Heyer, W.D. J. Biol. Chem. (2005) [Pubmed]
WikiGenes - Universities