The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

RAD54  -  DNA-dependent ATPase RAD54

Saccharomyces cerevisiae S288c

Synonyms: DNA repair and recombination protein RAD54, G1821, YGL163C
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of RAD54

 

High impact information on RAD54

  • Its biological importance is underscored by the conservation of many RAD52 pathway genes, including RAD54, from fungi to humans [3].
  • The Saccharomyces cerevisiae RAD51 and RAD54 genes are both required for the occurrence of homologous recombination and for the repair of double-stranded DNA breaks [4].
  • We conclude that Rad54 acts to overcome kinetic impediments that would limit homologous DNA pairing between recombining chromosomes in vivo [4].
  • Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules [5].
  • Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments [6].
 

Biological context of RAD54

 

Anatomical context of RAD54

 

Associations of RAD54 with chemical compounds

 

Enzymatic interactions of RAD54

  • Rad51 nucleoprotein filaments catalyze DNA strand exchange and Rad54 augments this activity of Rad51 [16].
 

Regulatory relationships of RAD54

  • Tetrad analysis is used to show that meiotic recombination in RAD54-suppressed dmc1Delta cells is similar to that in tid1; the frequency of COs and gene conversions is near normal, but crossover interference is defective [18].
  • High copy numbers of RAD54 suppress dmc1 arrest, promote DSB repair, and allow formation of viable spores following reductional segregation [19].
  • Rad54 protein stimulated Rad51/Rpa-mediated DNA strand exchange by specifically increasing the kinetics of joint molecule formation [20].
  • In addition to its checkpoint function, Dot1 blocks the repair of meiotic double-strand breaks by a Rad54-dependent pathway of recombination between sister chromatids [21].
 

Other interactions of RAD54

  • Lack of Rad54p does not significantly impair Rad51p recruitment to MAT or its initial association with HML alpha; however, Rad54p is required at or before the initiation of DNA synthesis after synapsis has occurred at the 3' end of the invading strand [22].
  • A rad54 mutation, in contrast, has relatively little effect on RecA homolog foci except when strains also contain a tid1/rdh54 mutation [23].
  • In the rad52 and the rad54 strains, enhanced formation of aberrations, mostly exchange-type aberrations, was detected, demonstrating the misrepair activity of a rejoining mechanism other than homologous recombination [24].
  • Considerable homology has recently been noted between the proteins encoded by the RAD5, RAD16 and RAD54 genes of Saccharomyces cerevisiae [25].
  • Additionally, the proteins encoded by RAD5, RAD16 and RAD54 may compete for the same substrate after damage induced by UV radiation, possibly at an early step in their respective pathways [25].
 

Analytical, diagnostic and therapeutic context of RAD54

References

  1. Development of RNR3- and RAD54-GUS reporters for testing genotoxicity in Saccharomyces cerevisiae. Boronat, S., Pi??a, B. Analytical and bioanalytical chemistry (2006) [Pubmed]
  2. The dynamics of homologous pairing during mating type interconversion in budding yeast. Houston, P.L., Broach, J.R. PLoS Genet. (2006) [Pubmed]
  3. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Essers, J., Hendriks, R.W., Swagemakers, S.M., Troelstra, C., de Wit, J., Bootsma, D., Hoeijmakers, J.H., Kanaar, R. Cell (1997) [Pubmed]
  4. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Petukhova, G., Stratton, S., Sung, P. Nature (1998) [Pubmed]
  5. Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules. Amitani, I., Baskin, R.J., Kowalczykowski, S.C. Mol. Cell (2006) [Pubmed]
  6. Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Solinger, J.A., Kiianitsa, K., Heyer, W.D. Mol. Cell (2002) [Pubmed]
  7. Molecular and genetic analysis of the gene encoding the Saccharomyces cerevisiae strand exchange protein Sep1. Tishkoff, D.X., Johnson, A.W., Kolodner, R.D. Mol. Cell. Biol. (1991) [Pubmed]
  8. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Signon, L., Malkova, A., Naylor, M.L., Klein, H., Haber, J.E. Mol. Cell. Biol. (2001) [Pubmed]
  9. Direct association between the yeast Rad51 and Rad54 recombination proteins. Jiang, H., Xie, Y., Houston, P., Stemke-Hale, K., Mortensen, U.H., Rothstein, R., Kodadek, T. J. Biol. Chem. (1996) [Pubmed]
  10. The role of Schizosaccharomyces pombe Rad32, the Mre11 homologue, and other DNA damage response proteins in non-homologous end joining and telomere length maintenance. Wilson, S., Warr, N., Taylor, D.L., Watts, F.Z. Nucleic Acids Res. (1999) [Pubmed]
  11. Characterization of the roles of the Saccharomyces cerevisiae RAD54 gene and a homologue of RAD54, RDH54/TID1, in mitosis and meiosis. Shinohara, M., Shita-Yamaguchi, E., Buerstedde, J.M., Shinagawa, H., Ogawa, H., Shinohara, A. Genetics (1997) [Pubmed]
  12. Human and mouse homologs of the Saccharomyces cerevisiae RAD54 DNA repair gene: evidence for functional conservation. Kanaar, R., Troelstra, C., Swagemakers, S.M., Essers, J., Smit, B., Franssen, J.H., Pastink, A., Bezzubova, O.Y., Buerstedde, J.M., Clever, B., Heyer, W.D., Hoeijmakers, J.H. Curr. Biol. (1996) [Pubmed]
  13. Inactivation of RAD52 aggravates RAD54 defects in mice but not in Schizosaccharomyces pombe. de Vries, F.A., Zonneveld, J.B., van Duijn-Goedhart, A., Roodbergen, M., Boei, J., van Buul, P.P., Essers, J., van Steeg, H., van Zeeland, A.A., van Benthem, J., Pastink, A. DNA Repair (Amst.) (2005) [Pubmed]
  14. Embryonic stem cells deficient for Brca2 or Blm exhibit divergent genotoxic profiles that support opposing activities during homologous recombination. Marple, T., Kim, T.M., Hasty, P. Mutat. Res. (2006) [Pubmed]
  15. DNA-damage induction of RAD54 can be regulated independently of the RAD9- and DDC1-dependent checkpoints that regulate RNR2. Walsh, L., Schmuckli-Maurer, J., Billinton, N., Barker, M.G., Heyer, W.D., Walmsley, R.M. Curr. Genet. (2002) [Pubmed]
  16. Spontaneous and double-strand break-induced recombination, and gene conversion tract lengths, are differentially affected by overexpression of wild-type or ATPase-defective yeast Rad54. Kim, P.M., Paffett, K.S., Solinger, J.A., Heyer, W.D., Nickoloff, J.A. Nucleic Acids Res. (2002) [Pubmed]
  17. Influence of different inhibitors on the activity of the RAD54 dependent step of DNA repair in Saccharomyces cerevisiae. Siede, W., Obermaier, S., Eckardt, F. Radiation and environmental biophysics. (1985) [Pubmed]
  18. Crossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathway. Shinohara, M., Sakai, K., Shinohara, A., Bishop, D.K. Genetics (2003) [Pubmed]
  19. High copy number suppression of the meiotic arrest caused by a dmc1 mutation: REC114 imposes an early recombination block and RAD54 promotes a DMC1-independent DSB repair pathway. Bishop, D.K., Nikolski, Y., Oshiro, J., Chon, J., Shinohara, M., Chen, X. Genes Cells (1999) [Pubmed]
  20. Rad54 protein stimulates heteroduplex DNA formation in the synaptic phase of DNA strand exchange via specific interactions with the presynaptic Rad51 nucleoprotein filament. Solinger, J.A., Lutz, G., Sugiyama, T., Kowalczykowski, S.C., Heyer, W.D. J. Mol. Biol. (2001) [Pubmed]
  21. Role for the silencing protein Dot1 in meiotic checkpoint control. San-Segundo, P.A., Roeder, G.S. Mol. Biol. Cell (2000) [Pubmed]
  22. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Sugawara, N., Wang, X., Haber, J.E. Mol. Cell (2003) [Pubmed]
  23. Tid1/Rdh54 promotes colocalization of rad51 and dmc1 during meiotic recombination. Shinohara, M., Gasior, S.L., Bishop, D.K., Shinohara, A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  24. Radiation-induced chromosome aberrations in Saccharomyces cerevisiae: influence of DNA repair pathways. Friedl, A.A., Kiechle, M., Fellerhoff, B., Eckardt-Schupp, F. Genetics (1998) [Pubmed]
  25. Synergistic interactions between RAD5, RAD16 and RAD54, three partially homologous yeast DNA repair genes each in a different repair pathway. Glassner, B.J., Mortimer, R.K. Radiat. Res. (1994) [Pubmed]
  26. High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Shaked, H., Melamed-Bessudo, C., Levy, A.A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  27. The toxic potential of an industrial effluent determined with the Saccharomyces cerevisiae-based assay. Schmitt, M., Gellert, G., Lichtenberg-Fraté, H. Water Res. (2005) [Pubmed]
  28. Gly-103 in the N-terminal domain of Saccharomyces cerevisiae Rad51 protein is critical for DNA binding. Zhang, X.P., Lee, K.I., Solinger, J.A., Kiianitsa, K., Heyer, W.D. J. Biol. Chem. (2005) [Pubmed]
  29. MUS81 encodes a novel helix-hairpin-helix protein involved in the response to UV- and methylation-induced DNA damage in Saccharomyces cerevisiae. Interthal, H., Heyer, W.D. Mol. Gen. Genet. (2000) [Pubmed]
 
WikiGenes - Universities