The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The functional cooperation of MAP1A heavy chain and light chain 2 in the binding of microtubules.

Microtubule-associated protein 1A (MAP1A) is a high-molecular-weight protein that is comprised of a heavy chain and a light chain (LC2) and is widely distributed along the microtubules in both mature neurons and glial cells. To illustrate the interaction among the MAP1A heavy chain, light chain, and microtubule, we prepared DNA constructs with Myc-, EGFP-, or DsRed-tags for full-length MAP1A DNA expressing whole MAP1A protein, two domains of MAP1A heavy chain, and light chain. Distribution patterns of various MAP1A domains as well as their interactions with microtubules were monitored in a non-neuronal COS7 and a neuronal Neuro2A cells. Our data revealed that a complete MAP1A protein, which contains both heavy chain and LC2, could be colocalized with microtubule networks not only in Neuro2A cells but also in transfected COS7 cells. Filamentous structures failed to be visualized along microtubules in COS7 cells transfected with MAP1A heavy chain or LC2 alone. Whereas, after introducing MAP1A heavy chain with LC2 into COS7 cells, both heavy chain and LC2 could be colocalized with microtubules. From our functional analysis, both MAP1A and its LC2 could protect microtubules against the challenge of nacodazol. Data collected from yeast two-hybrid assays of various MAP1A domains confirmed that the interaction of LC2 and NH2-terminal of MAP1A heavy chain is important for microtubule binding. From our analysis of MAP1A functional domains, we suggest that interactions between MAP1A heavy chain and LC2 are critical for the binding of microtubules.[1]

References

  1. The functional cooperation of MAP1A heavy chain and light chain 2 in the binding of microtubules. Chien, C.L., Lu, K.S., Lin, Y.S., Hsieh, C.J., Hirokawa, N. Exp. Cell Res. (2005) [Pubmed]
 
WikiGenes - Universities