The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

ClC-5: role in endocytosis in the proximal tubule.

The proper functioning of the Cl(-) channel, ClC-5, is essential for the uptake of low molecular mass proteins through receptor-mediated endocytosis in the proximal tubule. Dent's disease patients with mutant ClC-5 channels and ClC-5 knockout (KO) mice both have low molecular mass proteinuria. To further understand the function of ClC-5, endocytosis was studied in LLC-PK(1) cells and primary cultures of proximal tubule cells from wild-type (WT) and ClC-5 KO kidneys. Endocytosis in the proximal tubule cells from KO mice was reduced compared with that in WT animals. Endocytosis in WT but not in KO cells was inhibited by bafilomycin A-1 and Cl(-) depletion, whereas endocytosis in both WT and KO cells was inhibited by the NHE3 blocker, S3226. Infection with adenovirus containing WT ClC-5 rescued receptor-mediated endocytosis in KO cells, whereas infection with any of the three disease-causing mutants, myc-W22G-ClC-5, myc-S520P-ClC-5, or myc-R704X-ClC-5, did not. WT and the three mutants all trafficked to the apical surface, as assessed by surface biotinylation. WT-ClC-5 and the W22G mutant were internalized similarly, whereas neither the S520P nor the R704X mutants was. These data indicate that ClC-5 is important for Cl(-) and proton pump-mediated endocytosis. However, not all receptor-mediated endocytosis in the proximal tubule is dependent on ClC-5. There is a significant fraction that can be inhibited by an NHE3 blocker. Our data from the mutants suggest that defective targeting and trafficking of mutant ClC-5 to the endosomes are a major determinant in the lack of normal endocytosis in Dent's disease.[1]

References

  1. ClC-5: role in endocytosis in the proximal tubule. Wang, Y., Cai, H., Cebotaru, L., Hryciw, D.H., Weinman, E.J., Donowitz, M., Guggino, S.E., Guggino, W.B. Am. J. Physiol. Renal Physiol. (2005) [Pubmed]
 
WikiGenes - Universities