The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Mutagenesis studies toward understanding the mechanism of the cofactor function of thrombomodulin.

Thrombomodulin (TM) is as essential cofactor in protein C activation by thrombin. To investigate the cofactor effect of TM on the P3-P3' binding specificity of thrombin, we prepared a Gla-domainless protein C (GDPC) and an antithrombin (AT) mutant in which the P3-P3' residues of both molecules were replaced with the corresponding residues of the factor Xa cleavage site in prethrombin-2. TM is known to interact with GDPC, but not AT in the complex. Thrombin did not react with either mutant in the absence of a cofactor. While the thrombin-TM complex also did not react with the AT mutant, it activated the GDPC mutant with a normal k(cat), but an approximately 4-fold impaired K(m) value. Further studies revealed that the active-site directed inhibitor p-aminobenzamidine acts as a competitive inhibitor of both wild-type and GDPC mutant in reaction with the thrombin-TM complex. These results suggest that the interaction of the P3-P3' residues of GDPC with the active-site pocket of the thrombin-TM complex makes a dominant contribution to the binding specificity of the reaction. Moreover, the observation that the GDPC mutant, but not the AT mutant, functions as an effective substrate for the thrombin-TM complex suggests that GDPC interaction with the thrombin-TM complex may be associated with the alteration of the conformation of the P3-P3' residues of the substrate.[1]

References

 
WikiGenes - Universities