The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Substitution of lysine 213 with arginine in penicillin-binding protein 5 of Escherichia coli abolishes D-alanine carboxypeptidase activity without affecting penicillin binding.

All penicillin-binding proteins (PBPs) contain a conserved box of homology in the carboxyl-terminal half of their primary sequence that can be Lys-Thr-Gly, Lys-Ser-Gly, or His-Thr-Gly. Site-saturation mutagenesis was used to address the role of the lysine residue at this position (Lys213) in Escherichia coli PBP 5, a D-alanine carboxypeptidase enzyme. A soluble form of PBP 5 was used to replace Lys213 with 18 other amino acids, and the ability of these mutant proteins to bind [3H]penicillin G was assessed. Only the substitution of lysine with arginine resulted in a protein that was capable of forming a stable covalent complex with antibiotic. The affinity of [14C]penicillin G for the arginine mutant was 1.2-fold higher than for wild-type PBP 5 (4.4 versus 5.1 micrograms/ml for 20 min at 30 degrees C), and both proteins showed identical rates of hydrolysis of the [14C]penicilloyl-bound complex (t1/2 = 9.1 min). Surprisingly, the arginine-substituted protein was unable to catalyze D-alanine carboxypeptidase activity in vitro, which suggests that there is a substantial difference in the geometries of the peptide substrate and penicillin G within the active site of PBP 5.[1]

References

 
WikiGenes - Universities