Abl tyrosine kinase and its substrate Ena/VASP have functional interactions with kinesin-1.
Relatively little is known about how microtubule motors are controlled or about how the functions of different cytoskeletal systems are integrated. A yeast two-hybrid screen for proteins that bind to Drosophila Enabled (Ena), an actin polymerization factor that is negatively regulated by Abl tyrosine kinase, identified kinesin heavy chain ( Khc), a member of the kinesin-1 subfamily of microtubule motors. Coimmunoprecipitation from Drosophila cytosol confirmed a physical interaction between Khc and Ena. Kinesin-1 motors can carry organelles and other macromolecular cargoes from neuronal cell bodies toward terminals in fast-axonal-transport. Ena distribution in larval axons was not affected by mutations in the Khc gene, suggesting that Ena is not itself a fast transport cargo of Drosophila kinesin-1. Genetic interaction tests showed that in a background sensitized by reduced Khc gene dosage, a reduction in Abl gene dosage caused distal paralysis and axonal swellings. A concomitant reduction in ena dosage rescued those defects. These results suggest that Ena/VASP, when not inhibited by the Abl pathway, can bind Khc and reduce its transport activity in axons.[1]References
- Abl tyrosine kinase and its substrate Ena/VASP have functional interactions with kinesin-1. Martin, M., Ahern-Djamali, S.M., Hoffmann, F.M., Saxton, W.M. Mol. Biol. Cell (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg