The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis.

Type 2 diabetes is a disorder of hyperglycemia resulting from failure of beta cells to produce adequate insulin to accommodate an increased metabolic demand. Here we show that regulation of mRNA translation through phosphorylation of eukaryotic initiation factor 2 (eIF2alpha) is essential to preserve the integrity of the endoplasmic reticulum (ER) and to increase insulin production to meet the demand imposed by a high-fat diet. Accumulation of unfolded proteins in the ER activates phosphorylation of eIF2alpha at Ser51 and inhibits translation. To elucidate the role of this pathway in beta-cell function we studied glucose homeostasis in Eif2s1(tm1Rjk) mutant mice, which have an alanine substitution at Ser51. Heterozygous (Eif2s1(+/tm1Rjk)) mice became obese and diabetic on a high-fat diet. Profound glucose intolerance resulted from reduced insulin secretion accompanied by abnormal distension of the ER lumen, defective trafficking of proinsulin, and a reduced number of insulin granules in beta cells. We propose that translational control couples insulin synthesis with folding capacity to maintain ER integrity and that this signal is essential to prevent diet-induced type 2 diabetes.[1]

References

  1. Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Scheuner, D., Mierde, D.V., Song, B., Flamez, D., Creemers, J.W., Tsukamoto, K., Ribick, M., Schuit, F.C., Kaufman, R.J. Nat. Med. (2005) [Pubmed]
 
WikiGenes - Universities