The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Phosphorylation of pyruvate kinase type K is restricted to the dimeric form.

In the absence of glycolytic intermediate, fructose-1,6-bisphosphate, pyruvate kinase type K exists in the dimeric form and is readily phosphorylated, whereas in the same sample and the same conditions pyruvate kinase type M is present as a tetramer and is not phosphorylated. Addition of fructose-1,6-bisphosphate results in the association of dimeric K2 molecules to a tetrameric K4 enzyme as determined by gel filtration and cellulose acetate electrophoresis, with concomitant loss of the capacity of the K isozyme to become phosphorylated. Phosphorylated K2 dimers can also tetramerize, but with a low recovery of the radiolabel, suggesting a fructose-1,6-bisphosphate induced dephosphorylation or selective degradation. The dimeric K isozyme is enzymatically active; inactive K-type monomers can be detected by immunoblot analysis in the absence of fructose-1,6-bisphosphate, but no phosphorylated pyruvate kinase is present in this fraction. The formation of K4 tetramers can not be accomplished by the substrate phosphoenolpyruvate. Fructose-1,6-bisphosphate is an allosteric activator of pyruvate kinase type K and induces hyperbolic saturation curves for phosphoenolpyruvate. In contrast, in the absence of effectors, pyruvate kinase type M exhibits Michaelis-Menten kinetics, but sigmoidal curves can be induced by the amino acid phenylalanine. However, even in the presence of phenylalanine, the M-type maintained its tetrameric configuration and did not serve as a substrate in the phosphorylation reaction. These findings argue for the importance of subunit interaction in the regulation of phosphorylation of pyruvate kinase.[1]

References

  1. Phosphorylation of pyruvate kinase type K is restricted to the dimeric form. Weernink, P.A., Rijksen, G., Mascini, E.M., Staal, G.E. Biochim. Biophys. Acta (1992) [Pubmed]
 
WikiGenes - Universities