Analysis of paralogous pontin and reptin gene expression during mouse development.
Evolutionarily conserved from yeast to human, the paralogous DNA helicases Pontin (Pont) and Reptin (Rept) are simultaneously recruited in multi-protein chromatin complexes that function in different aspects of DNA metabolism (transcription, replication and repair). When assayed, the two proteins were found to be essential for viability and to play antagonistic roles, suggesting that the balance of Pont/Rept regulates epigenetic programmes critical for development. Consistent with this, the two helicases are provided in the same embryonic territories during Drosophila development. In Xenopus, while transcribed in the same regions early in embryogenesis, pont and rept adopt significantly different patterns afterwards. Here we report that the two genes follow highly resembling transcription patterns in mouse embryos, with prominent expression in limb buds and branchial arches, organs undergoing mesenchymal-epithelial interactions and in motoneurones from cranial and spinal regions. Thus, simultaneous expression during development appears to constitute another feature of the evolutionary conservation of pont and rept genes.[1]References
- Analysis of paralogous pontin and reptin gene expression during mouse development. Chauvet, S., Usseglio, F., Aragnol, D., Pradel, J. Dev. Genes Evol. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg