The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Non-equilibrium behavior of HCN channels: insights into the role of HCN channels in native and engineered pacemakers.

OBJECTIVE: I(f), encoded by the hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channel gene family, modulates cardiac pacing. During cardiac pacing, changes in membrane potential are rapid, preventing the very slow HCN channels from reaching equilibrium. Here, we examined the properties of HCN channels under non-equilibrium conditions to shed insight into how different HCN isoforms contribute to cardiac pacing. METHODS AND RESULTS: HCN1, 2 and 4 channels were heterologously expressed in Xenopus laevis oocytes or mammalian Cos7 cells and subjected to voltage clamp. We found that HCN1 channel activation (V1/2) depended strongly on the holding potential (V(H)) for short (100 ms; V1/2=-118 mV, -78 mV and -19 mV for V(H)= +70, -75 and -140 mV, respectively, in Xenopus oocytes) but not long (300-ms) test-pulses, hinting that shifts of V1/2 under non-equilibrium conditions may alter the impact of I(f) in different phases of the cardiac circle. Consistent with this notion, when a train of SA nodal-like action potentials was applied in voltage-clamp experiments, HCN1 exhibited pronounced current-voltage (IV)-hysteresis. Using computational modeling, we demonstrate that the intrinsically sluggish HCN1 activation kinetics underlie their IV-hysteretic behavior and do not hinder the ability to modulate cardiac pacing. By contrast, HCN4 did not exhibit IV-hysteresis. This difference can be attributed to the relatively large activation time constant and markedly delayed onsets of time-dependent HCN4 currents. Indeed, HCN2 channels, which have intermediate activation time constants and delays, displayed and intermediate hysteretic phenotype. CONCLUSION: We conclude that non-equilibrium properties of HCN channels contribute to cardiac pacing. These results provide insight for tuning the firing rate of endogenous and induced pacemakers using engineered HCN constructs with distinct gating phenotypes.[1]

References

  1. Non-equilibrium behavior of HCN channels: insights into the role of HCN channels in native and engineered pacemakers. Azene, E.M., Xue, T., Marbán, E., Tomaselli, G.F., Li, R.A. Cardiovasc. Res. (2005) [Pubmed]
 
WikiGenes - Universities