The Arf-like GTPase Arl1 and its role in membrane traffic.
Small GTP-binding proteins of the Rab and Arf (ADP-ribosylation factor) families play a central role in the membrane trafficking pathways of eukaryotic cells. The prototypical members of the Arf family are Arf1-Arf6 and Sar1, which have well-characterized roles in membrane traffic or cytoskeletal reorganization. However, eukaryotic genomes encode additional proteins, which share the characteristic structural features of the Arf family, but the role of these 'Arf-like' (Arl) proteins is less well understood. This review discusses Arl1, a GTPase that is widely conserved in evolution, and which is localized to the Golgi in all species so far examined. The best-characterized effectors of Arl1 are coiled-coil proteins which share a C-terminal GRIP domain, but other apparent effectors include the GARP (Golgi- associated retrograde protein)/VFT (Vps fifty-three) vesicle-tethering complex and Arfaptin 2. As least some of these proteins are believed to have a role in membrane traffic. Genetic analysis in a number of species has shown that Arl1 is not essential for exocytosis, but rather suggest that it is required for traffic from endosomes to the Golgi.[1]References
- The Arf-like GTPase Arl1 and its role in membrane traffic. Munro, S. Biochem. Soc. Trans. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg