The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Human T-cell lymphotropic virus type I-transformed T-cells have a partial defect in ceramide synthesis in response to N-(4-hydroxyphenyl)retinamide.

Treatment with the synthetic retinoid HPR [N-(4-hydroxyphenyl)-retinamide] causes growth arrest and apoptosis in HTLV-I (human T-cell lymphotropic virus type-I)-positive and HTLV-I-negative malignant T-cells. It was observed that HPR-mediated growth inhibition was associated with ceramide accumulation only in HTLV-I-negative cells. The aim of the present study was to investigate the mechanism by which HPR differentially regulates ceramide metabolism in HTLV-I-negative and HTLV-I-positive malignant T-cells. Clinically achievable concentrations of HPR caused early dose-dependent increases in ceramide levels only in HTLV-I-negative cells and preceded HPR-induced growth suppression. HPR induced de novo synthesis of ceramide in HTLV-I-negative, but not in HTLV-I-positive, cells. Blocking ceramide glucosylation in HTLV-I-positive cells, which leads to accumulation of endogenous ceramide, rendered these cells more sensitive to HPR. Exogenous cell-permeant ceramides that function partially by generating endogenous ceramide induced growth suppression in all tested malignant lymphocytes, were consistently found to be less effective in HTLV-I-positive cells confirming their defect in de novo ceramide synthesis. Owing to its multipotent activities, the HTLV-I-encoded Tax protein was suspected to inhibit ceramide synthesis. Tax-transfected Molt-4 and HELA cells were less sensitive to HPR and C6-ceramide mediated growth inhibition respectively and produced lower levels of endogenous ceramide. Together, these results indicate that HTLV-I-positive cells are defective in de novo synthesis of ceramide and that therapeutic modalities that bypass this defect are more likely to be successful.[1]

References

  1. Human T-cell lymphotropic virus type I-transformed T-cells have a partial defect in ceramide synthesis in response to N-(4-hydroxyphenyl)retinamide. Darwiche, N., Abou-Lteif, G., Najdi, T., Kozhaya, L., Abou Tayyoun, A., Bazarbachi, A., Dbaibo, G.S. Biochem. J. (2005) [Pubmed]
 
WikiGenes - Universities