The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Endothelial beta3-adrenoreceptors mediate nitric oxide-dependent vasorelaxation of coronary microvessels in response to the third-generation beta-blocker nebivolol.

BACKGROUND: The therapeutic effects of nonspecific beta-blockers are limited by vasoconstriction, thus justifying the interest in molecules with ancillary vasodilating properties. Nebivolol is a selective beta1-adrenoreceptor antagonist that releases nitric oxide (NO) through incompletely characterized mechanisms. We identified endothelial beta3-adrenoreceptors in human coronary microarteries that mediate endothelium- and NO-dependent relaxation and hypothesized that nebivolol activates these beta3-adrenoreceptors. METHODS AND RESULTS: Nebivolol dose-dependently relaxed rodent coronary resistance microarteries studied by videomicroscopy (10 micromol/L, -86+/-6% of prostaglandin F2alpha contraction); this was sensitive to NO synthase (NOS) inhibition, unaffected by the beta(1-2)-blocker nadolol, and prevented by the beta(1-2-3)-blocker bupranolol (P<0.05; n=3 to 8). Importantly, nebivolol failed to relax microarteries from beta3-adrenoreceptor-deficient mice. Nebivolol (10 micromol/L) also relaxed human coronary microvessels (-71+/-5% of KCl contraction); this was dependent on a functional endothelium and NO synthase but insensitive to beta(1-2)-blockade (all P<0.05). In a mouse aortic ring assay of neoangiogenesis, nebivolol induced neocapillary tube formation in rings from wild-type but not beta3-adrenoreceptor- or endothelial NOS-deficient mice. In cultured endothelial cells, 10 micromol/L nebivolol increased NO release by 200% as measured by electron paramagnetic spin trapping, which was also reversed by NOS inhibition. In parallel, endothelial NOS was dephosphorylated on threonine(495), and fura-2 calcium fluorescence increased by 91.8+/-23.7%; this effect was unaffected by beta(1-2)-blockade but abrogated by beta(1-2-3)-blockade (all P<0.05). CONCLUSIONS: Nebivolol dilates human and rodent coronary resistance microarteries through an agonist effect on endothelial beta3-adrenoreceptors to release NO and promote neoangiogenesis. These properties may prove particularly beneficial for the treatment of ischemic and cardiac failure diseases through preservation of coronary reserve.[1]

References

  1. Endothelial beta3-adrenoreceptors mediate nitric oxide-dependent vasorelaxation of coronary microvessels in response to the third-generation beta-blocker nebivolol. Dessy, C., Saliez, J., Ghisdal, P., Daneau, G., Lobysheva, I.I., Frérart, F., Belge, C., Jnaoui, K., Noirhomme, P., Feron, O., Balligand, J.L. Circulation (2005) [Pubmed]
 
WikiGenes - Universities