The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Spin Trapping

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Spin Trapping


High impact information on Spin Trapping


Chemical compound and disease context of Spin Trapping


Biological context of Spin Trapping


Anatomical context of Spin Trapping


Associations of Spin Trapping with chemical compounds


Gene context of Spin Trapping


Analytical, diagnostic and therapeutic context of Spin Trapping

  • Microdialysis was utilized to determine blood and brain distribution of spin-trapping nitrone compounds in the rat following intraperitoneal administration [36].
  • To prevent either calcium overload or lipid oxidative processes during reperfusion, either Ketorolac (KET), a calcium ionophore-like drug, or alpha-Phenyl-N-ter-butyl nitrone (PBN), a spin-trapping agent, was administered beforehand [37].
  • Since several spin adducts between TMP radicals and MNP, as well as the byproducts of the spin trapping reagent itself, were produced, reverse-phase HPLC was used to separate them [38].
  • A spin-trapping method combined with enzymatic digestion and high-performance liquid chromatography was employed to detect hydroxyl-radical-induced precursors of strand breaks in oligonucleotides ((dC)10 and (dT)10) as DNA models [39].
  • In the present work, this issue has been addressed through the combined use of the spin-trapping reagent 2-methyl-2-nitrosopropane and peptide mapping by electrospray mass spectrometry to identify Tyr39 and Tyr153 as two tyrosyl residues that are capable of forming radical centers upon reaction of CcP with hydrogen peroxide [40].


  1. Direct evidence for in vivo hydroxyl-radical generation in experimental iron overload: an ESR spin-trapping investigation. Burkitt, M.J., Mason, R.P. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  2. Hepatic nitric oxide production following acute endotoxemia in rats is mediated by increased inducible nitric oxide synthase gene expression. Laskin, D.L., Rodriguez del Valle, M., Heck, D.E., Hwang, S.M., Ohnishi, S.T., Durham, S.K., Goller, N.L., Laskin, J.D. Hepatology (1995) [Pubmed]
  3. ESR spin-trapping studies on the reaction of Fe2+ ions with H2O2-reactive species in oxygen toxicity in biology. Yamazaki, I., Piette, L.H. J. Biol. Chem. (1990) [Pubmed]
  4. Spin-trapping evidence that graded myocardial ischemia alters post-ischemic superoxide production. Kramer, J.H., Arroyo, C.M., Dickens, B.F., Weglicki, W.B. Free Radic. Biol. Med. (1987) [Pubmed]
  5. Failure of allopurinol and a spin trapping agent N-t-butyl-alpha-phenyl nitrone to modify significantly ischaemia and reperfusion-induced arrhythmias. Parratt, J.R., Wainwright, C.L. Br. J. Pharmacol. (1987) [Pubmed]
  6. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Parman, T., Wiley, M.J., Wells, P.G. Nat. Med. (1999) [Pubmed]
  7. Mononuclear phagocytes have the potential for sustained hydroxyl radical production. Use of spin-trapping techniques to investigate mononuclear phagocyte free radical production. Britigan, B.E., Coffman, T.J., Adelberg, D.R., Cohen, M.S. J. Exp. Med. (1988) [Pubmed]
  8. Iron supplementation generates hydroxyl radical in vivo. An ESR spin-trapping investigation. Kadiiska, M.B., Burkitt, M.J., Xiang, Q.H., Mason, R.P. J. Clin. Invest. (1995) [Pubmed]
  9. Protease-cleaved iron-transferrin augments oxidant-mediated endothelial cell injury via hydroxyl radical formation. Miller, R.A., Britigan, B.E. J. Clin. Invest. (1995) [Pubmed]
  10. Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury. Britigan, B.E., Roeder, T.L., Rasmussen, G.T., Shasby, D.M., McCormick, M.L., Cox, C.D. J. Clin. Invest. (1992) [Pubmed]
  11. Role of oxidative stress and the glutathione system in loss of dopamine neurons due to impairment of energy metabolism. Zeevalk, G.D., Bernard, L.P., Nicklas, W.J. J. Neurochem. (1998) [Pubmed]
  12. In vivo murine studies on the biochemical mechanism of naphthalene cataractogenesis. Wells, P.G., Wilson, B., Lubek, B.M. Toxicol. Appl. Pharmacol. (1989) [Pubmed]
  13. The spin trapping agent PBN stimulates H2 O2 -induced Erk and Src kinase activity in human neuroblastoma cells. Kelicen, P., Cantuti-Castelvetri, I., Pekiner, C., Paulson, K.E. Neuroreport (2002) [Pubmed]
  14. Spin trapping agent, phenyl N-tert-butylnitrone, reduces nitric oxide production in the rat brain during experimental meningitis. Endoh, H., Kato, N., Fujii, S., Suzuki, Y., Sato, S., Kayama, T., Kotake, Y., Yoshimura, T. Free Radic. Res. (2001) [Pubmed]
  15. Generation of oxygen radicals from iron complex of orellanine, a mushroom nephrotoxin; preliminary ESR and spin-trapping studies. Cantin-Esnault, D., Richard, J.M., Jeunet, A. Free Radic. Res. (1998) [Pubmed]
  16. The baculovirus antiapoptotic p35 gene also functions via an oxidant-dependent pathway. Sah, N.K., Taneja, T.K., Pathak, N., Begum, R., Athar, M., Hasnain, S.E. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  17. Oxidative DNA damage and senescence of human diploid fibroblast cells. Chen, Q., Fischer, A., Reagan, J.D., Yan, L.J., Ames, B.N. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  18. Spin-trapping of free radicals formed during in vitro and in vivo metabolism of 3-methylindole. Kubow, S., Janzen, E.G., Bray, T.M. J. Biol. Chem. (1984) [Pubmed]
  19. Carbon dioxide stimulates the production of thiyl, sulfinyl, and disulfide radical anion from thiol oxidation by peroxynitrite. Bonini, M.G., Augusto, O. J. Biol. Chem. (2001) [Pubmed]
  20. Resveratrol, melatonin, vitamin E, and PBN protect against renal oxidative DNA damage induced by the kidney carcinogen KBrO3. Cadenas, S., Barja, G. Free Radic. Biol. Med. (1999) [Pubmed]
  21. Reactive free radical generation in vivo in heart and liver of ethanol-fed rats: correlation with radical formation in vitro. Reinke, L.A., Lai, E.K., DuBose, C.M., McCay, P.B. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  22. Spin trapping of free radicals during hepatic microsomal lipid peroxidation. Rosen, G.M., Rauckman, E.J. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  23. In vivo spin trapping of glyceryl trinitrate-derived nitric oxide in rabbit blood vessels and organs. Mülsch, A., Mordvintcev, P., Bassenge, E., Jung, F., Clement, B., Busse, R. Circulation (1995) [Pubmed]
  24. Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes. Ramos, C.L., Pou, S., Britigan, B.E., Cohen, M.S., Rosen, G.M. J. Biol. Chem. (1992) [Pubmed]
  25. Reduction of nifurtimox and nitrofurantoin to free radical metabolites by rat liver mitochondria. Evidence of an outer membrane-located nitroreductase. Moreno, S.N., Mason, R.P., Docampo, R. J. Biol. Chem. (1984) [Pubmed]
  26. Possible role of bacterial siderophores in inflammation. Iron bound to the Pseudomonas siderophore pyochelin can function as a hydroxyl radical catalyst. Coffman, T.J., Cox, C.D., Edeker, B.L., Britigan, B.E. J. Clin. Invest. (1990) [Pubmed]
  27. Free radical-dependent dysfunction of small-for-size rat liver grafts: prevention by plant polyphenols. Zhong, Z., Connor, H.D., Froh, M., Bunzendahl, H., Lind, H., Lehnert, M., Mason, R.P., Thurman, R.G., Lemasters, J.J. Gastroenterology (2005) [Pubmed]
  28. On the spin trapping and ESR detection of oxygen-derived radicals generated inside cells. Samuni, A., Carmichael, A.J., Russo, A., Mitchell, J.B., Riesz, P. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  29. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Carney, J.M., Starke-Reed, P.E., Oliver, C.N., Landum, R.W., Cheng, M.S., Wu, J.F., Floyd, R.A. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  30. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Xia, Y., Dawson, V.L., Dawson, T.M., Snyder, S.H., Zweier, J.L. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  31. Growth inhibitory factor prevents neurite extension and the death of cortical neurons caused by high oxygen exposure through hydroxyl radical scavenging. Uchida, Y., Gomi, F., Masumizu, T., Miura, Y. J. Biol. Chem. (2002) [Pubmed]
  32. Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. Ameziane-El-Hassani, R., Morand, S., Boucher, J.L., Frapart, Y.M., Apostolou, D., Agnandji, D., Gnidehou, S., Ohayon, R., Noël-Hudson, M.S., Francon, J., Lalaoui, K., Virion, A., Dupuy, C. J. Biol. Chem. (2005) [Pubmed]
  33. Increased mitochondrial antioxidative activity or decreased oxygen free radical propagation prevent mutant SOD1-mediated motor neuron cell death and increase amyotrophic lateral sclerosis-like transgenic mouse survival. Liu, R., Li, B., Flanagan, S.W., Oberley, L.W., Gozal, D., Qiu, M. J. Neurochem. (2002) [Pubmed]
  34. Effects of COX-2 inhibitors on ROS produced by Chlamydia pneumoniae-primed human promonocytic cells (THP-1). Mouithys-Mickalad, A., Deby-Dupont, G., Dogne, J.M., de Leval, X., Kohnen, S., Navet, R., Sluse, F., Hoebeke, M., Pirotte, B., Lamy, M. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  35. alpha-Phenyl-N-tert-butylnitrone provides protection from dextran sulfate sodium-induced colitis in mice. Naito, Y., Takagi, T., Ishikawa, T., Handa, O., Matsumoto, N., Yagi, N., Matsuyama, K., Yoshida, N., Yoshikawa, T., Kotake, Y. Antioxid. Redox Signal. (2002) [Pubmed]
  36. Distribution of spin-trapping compounds in rat blood and brain: in vivo microdialysis determination. Cheng, H.Y., Liu, T., Feuerstein, G., Barone, F.C. Free Radic. Biol. Med. (1993) [Pubmed]
  37. Myocardial damage due to ischemia and reperfusion in hypertriglyceridemic and hypertensive rats: participation of free radicals and calcium overload. Carvajal, K., El Hafidi, M., Baños, G. J. Hypertens. (1999) [Pubmed]
  38. Evidence for the formation of strand-break precursors in hydroxy-attacked thymidine 5'-monophosphate by the spin trapping method. Kuwabara, M., Hiraoka, W., Sato, F. Biochemistry (1989) [Pubmed]
  39. Spin-trapping detection of precursors of hydroxyl-radical-induced DNA damage: identification of precursor radicals of DNA strand breaks in oligo(dC)10 and oligo(dT)10. Kuwabara, M., Ohshima, H., Sato, F., Ono, A., Matsuda, A. Biochemistry (1993) [Pubmed]
  40. Radical formation at Tyr39 and Tyr153 following reaction of yeast cytochrome c peroxidase with hydrogen peroxide. Zhang, H., He, S., Mauk, A.G. Biochemistry (2002) [Pubmed]
WikiGenes - Universities