The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Peptide-induced stabilization and intracellular localization of empty HLA class I complexes.

The human cell line T2 has been reported to be class I assembly deficient, and accordingly expresses reduced amounts of HLA-A2 and no HLA-B5 at the cell surface. By immunoblotting we observe the steady-state class I heavy chain levels of T2 to be near normal when compared with the identical class I alleles of the wild-type cell line T1. In pulse chase experiments, formation of heavy chain beta 2-microglobulin complexes is observed for both HLA-A2 and HLA-B5. Culture at reduced temperatures (26 or 20 degrees C) does not increase the amount of class I molecules transported, unlike what has been reported for the class I assembly-deficient mouse mutant cell line RMA-S. The HLA-B5 and the HLA-A2 complexes formed by T2 are thermolabile in cell lysates, albeit to different degrees. The thermolability of HLA-B5 can be overcome by addition of HLA-B5-presentable peptides, obtained by trifluoroacetic acid extraction from an HLA-B5-positive cell line, underlining the necessity of peptide for class I stability and indicating that T2-derived class I complexes are devoid of peptide. Cytoplast fusion of T2 cells with RMA-S cells shows the defect in class I assembly of RMA-S to be similar to that of T2. Localization of class I molecules observed by immuno-electron microscopy reveals the accumulation in the T2 cell line of both HLA-B5 and HLA-A2 in the endoplasmic reticulum (ER). Class I molecules are present in all the cisternae of the Golgi complex of T2, but the ratio of HLA-A and -B locus products in the Golgi area differs significantly from that at the cell surface. We conclude that the requirement for peptide in transport of class I molecules manifests itself at a stage beyond the ER, most likely the Golgi area.[1]

References

  1. Peptide-induced stabilization and intracellular localization of empty HLA class I complexes. Baas, E.J., van Santen, H.M., Kleijmeer, M.J., Geuze, H.J., Peters, P.J., Ploegh, H.L. J. Exp. Med. (1992) [Pubmed]
 
WikiGenes - Universities