The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Golgi Apparatus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Golgi Apparatus

 

High impact information on Golgi Apparatus

 

Chemical compound and disease context of Golgi Apparatus

 

Biological context of Golgi Apparatus

 

Anatomical context of Golgi Apparatus

 

Associations of Golgi Apparatus with chemical compounds

 

Gene context of Golgi Apparatus

  • Immunochemical analyses indicate that PS1 and PS2 are similar in size and localized to similar intracellular compartments (endoplasmic reticulum and Golgi complex) [31].
  • Class I molecules are present in all the cisternae of the Golgi complex of T2, but the ratio of HLA-A and -B locus products in the Golgi area differs significantly from that at the cell surface [32].
  • Based on these findings, a genetic screen has been devised to isolate mutations that affect retention of Kex2p in the Golgi complex [33].
  • GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex [34].
  • Glycosylphosphatidylinositol (GPI)-anchored proteins exit the ER in distinct vesicles from other secretory proteins, and this sorting event requires the Rab GTPase Ypt1p, tethering factors Uso1p, and the conserved oligomeric Golgi complex [35].
 

Analytical, diagnostic and therapeutic context of Golgi Apparatus

References

  1. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Scales, S.J., Pepperkok, R., Kreis, T.E. Cell (1997) [Pubmed]
  2. Functional overlap between murine Inpp5b and Ocrl1 may explain why deficiency of the murine ortholog for OCRL1 does not cause Lowe syndrome in mice. Jänne, P.A., Suchy, S.F., Bernard, D., MacDonald, M., Crawley, J., Grinberg, A., Wynshaw-Boris, A., Westphal, H., Nussbaum, R.L. J. Clin. Invest. (1998) [Pubmed]
  3. Targeting and processing of glycophorins in murine erythroleukemia cells: use of brefeldin A as a perturbant of intracellular traffic. Ulmer, J.B., Palade, G.E. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  4. A viral protease-mediated cleavage of the transmembrane glycoprotein of Mason-Pfizer monkey virus can be suppressed by mutations within the matrix protein. Brody, B.A., Rhee, S.S., Sommerfelt, M.A., Hunter, E. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  5. Dissection of Semliki Forest virus glycoprotein delivery from the trans-Golgi network to the cell surface in permeabilized BHK cells. de Curtis, I., Simons, K. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  6. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Barlowe, C., Orci, L., Yeung, T., Hosobuchi, M., Hamamoto, S., Salama, N., Rexach, M.F., Ravazzola, M., Amherdt, M., Schekman, R. Cell (1994) [Pubmed]
  7. Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Lewis, M.J., Pelham, H.R. Cell (1992) [Pubmed]
  8. Brefeldin A causes a microtubule-mediated fusion of the trans-Golgi network and early endosomes. Wood, S.A., Park, J.E., Brown, W.J. Cell (1991) [Pubmed]
  9. Selective inhibition of transcytosis by brefeldin A in MDCK cells. Hunziker, W., Whitney, J.A., Mellman, I. Cell (1991) [Pubmed]
  10. Beta-COP, a 110 kd protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to beta-adaptin. Duden, R., Griffiths, G., Frank, R., Argos, P., Kreis, T.E. Cell (1991) [Pubmed]
  11. Type-C Niemann-Pick disease: low density lipoprotein uptake is associated with premature cholesterol accumulation in the Golgi complex and excessive cholesterol storage in lysosomes. Blanchette-Mackie, E.J., Dwyer, N.K., Amende, L.M., Kruth, H.S., Butler, J.D., Sokol, J., Comly, M.E., Vanier, M.T., August, J.T., Brady, R.O. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  12. The golgi-associated COPI-coated buds and vesicles contain beta/gamma -actin. Valderrama, F., Luna, A., Babía, T., Martinez-Menárguez, J.A., Ballesta, J., Barth, H., Chaponnier, C., Renau-Piqueras, J., Egea, G. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  13. Inhibition of glycoprotein traffic through the secretory pathway by ceramide. Rosenwald, A.G., Pagano, R.E. J. Biol. Chem. (1993) [Pubmed]
  14. Evidence for an intrinsic toxicity of phosphatidylcholine to Sec14p-dependent protein transport from the yeast Golgi complex. Xie, Z., Fang, M., Bankaitis, V.A. Mol. Biol. Cell (2001) [Pubmed]
  15. The KDEL retrieval system is exploited by Pseudomonas exotoxin A, but not by Shiga-like toxin-1, during retrograde transport from the Golgi complex to the endoplasmic reticulum. Jackson, M.E., Simpson, J.C., Girod, A., Pepperkok, R., Roberts, L.M., Lord, J.M. J. Cell. Sci. (1999) [Pubmed]
  16. A role for ADP-ribosylation factor in nuclear vesicle dynamics. Boman, A.L., Taylor, T.C., Melançon, P., Wilson, K.L. Nature (1992) [Pubmed]
  17. The B cell antigen CD75 is a cell surface sialytransferase. Stamenkovic, I., Asheim, H.C., Deggerdal, A., Blomhoff, H.K., Smeland, E.B., Funderud, S. J. Exp. Med. (1990) [Pubmed]
  18. The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. Schimmöller, F., Singer-Krüger, B., Schröder, S., Krüger, U., Barlowe, C., Riezman, H. EMBO J. (1995) [Pubmed]
  19. The GTP-binding protein Ypt1 is required for transport in vitro: the Golgi apparatus is defective in ypt1 mutants. Bacon, R.A., Salminen, A., Ruohola, H., Novick, P., Ferro-Novick, S. J. Cell Biol. (1989) [Pubmed]
  20. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. Sahlender, D.A., Roberts, R.C., Arden, S.D., Spudich, G., Taylor, M.J., Luzio, J.P., Kendrick-Jones, J., Buss, F. J. Cell Biol. (2005) [Pubmed]
  21. A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Goud, B., Salminen, A., Walworth, N.C., Novick, P.J. Cell (1988) [Pubmed]
  22. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Bennett, M., Macdonald, K., Chan, S.W., Luzio, J.P., Simari, R., Weissberg, P. Science (1998) [Pubmed]
  23. Molecules that modify antigen recognition. Koch, N., Stockinger, B. Curr. Opin. Immunol. (1991) [Pubmed]
  24. Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex. Lodish, H.F., Kong, N. J. Cell Biol. (1984) [Pubmed]
  25. ICA 512, an autoantigen of type I diabetes, is an intrinsic membrane protein of neurosecretory granules. Solimena, M., Dirkx, R., Hermel, J.M., Pleasic-Williams, S., Shapiro, J.A., Caron, L., Rabin, D.U. EMBO J. (1996) [Pubmed]
  26. Polarized sorting of viral glycoproteins to the axon and dendrites of hippocampal neurons in culture. Dotti, C.G., Simons, K. Cell (1990) [Pubmed]
  27. Phosphoinositides and the golgi complex. De Matteis, M., Godi, A., Corda, D. Curr. Opin. Cell Biol. (2002) [Pubmed]
  28. Lipid regulators of membrane traffic through the Golgi complex. Roth, M.G. Trends Cell Biol. (1999) [Pubmed]
  29. Interactions among pathways for phosphatidylcholine metabolism, CTP synthesis and secretion through the Golgi apparatus. Kent, C., Carman, G.M. Trends Biochem. Sci. (1999) [Pubmed]
  30. Monensin action on the Golgi complex in perfused rat liver: evidence against bile salt vesicular transport. Reynier, M.O., Abou Hashieh, I., Crotte, C., Carbuccia, N., Richard, B., Gérolami, A. Gastroenterology (1992) [Pubmed]
  31. Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Kovacs, D.M., Fausett, H.J., Page, K.J., Kim, T.W., Moir, R.D., Merriam, D.E., Hollister, R.D., Hallmark, O.G., Mancini, R., Felsenstein, K.M., Hyman, B.T., Tanzi, R.E., Wasco, W. Nat. Med. (1996) [Pubmed]
  32. Peptide-induced stabilization and intracellular localization of empty HLA class I complexes. Baas, E.J., van Santen, H.M., Kleijmeer, M.J., Geuze, H.J., Peters, P.J., Ploegh, H.L. J. Exp. Med. (1992) [Pubmed]
  33. Vps1p, a member of the dynamin GTPase family, is necessary for Golgi membrane protein retention in Saccharomyces cerevisiae. Wilsbach, K., Payne, G.S. EMBO J. (1993) [Pubmed]
  34. GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. Dell'Angelica, E.C., Puertollano, R., Mullins, C., Aguilar, R.C., Vargas, J.D., Hartnell, L.M., Bonifacino, J.S. J. Cell Biol. (2000) [Pubmed]
  35. The ER v-SNAREs are required for GPI-anchored protein sorting from other secretory proteins upon exit from the ER. Morsomme, P., Prescianotto-Baschong, C., Riezman, H. J. Cell Biol. (2003) [Pubmed]
  36. Endogenous and monoclonal antibodies to the rat pancreatic acinar cell Golgi complex. Smith, Z.D., D'Eugenio-Gumkowski, F., Yanagisawa, K., Jamieson, J.D. J. Cell Biol. (1984) [Pubmed]
  37. Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. Hammond, C., Helenius, A. J. Cell Biol. (1994) [Pubmed]
  38. Structural requirements for localization and activation of protein kinase C mu (PKC mu) at the Golgi compartment. Hausser, A., Link, G., Bamberg, L., Burzlaff, A., Lutz, S., Pfizenmaier, K., Johannes, F.J. J. Cell Biol. (2002) [Pubmed]
  39. Yeast vacuolar proenzymes are sorted in the late Golgi complex and transported to the vacuole via a prevacuolar endosome-like compartment. Vida, T.A., Huyer, G., Emr, S.D. J. Cell Biol. (1993) [Pubmed]
  40. Dissection of the Golgi complex. II. Density separation of specific Golgi functions in virally infected cells treated with monensin. Quinn, P., Griffiths, G., Warren, G. J. Cell Biol. (1983) [Pubmed]
 
WikiGenes - Universities