Time course variations of antioxidant enzyme activities and histopathology of gilthead seabream gills exposed to malathion.
In a widely distributed and commercially important fish, gilthead seabream Sparus aurata L., we have studied sublethal effects of malathion in order to identify early warning bioindicators of exposure before irreversible damage occurs. To achieve this goal, groups of 10 juvenile specimens were exposed for 24, 48, 72 and 96 h to a sublethal concentration of malathion (0.4 mg/l). Another group was used as control. The activity of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and histopathological features from exposed gills were assessed. It should also be mentioned that no mortality was observed during the whole experience. The activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) were altered significantly from 24 h onward (p<0.05). It is of interest to note that catalase activity was decreased after exposure instead of increasing as other antioxidant enzymes assessed. On the other hand, histopathological alterations of the gills were observed as early as at 48 h-exposure, but the most severe damage occurred at 96 h exposure. The evidence presented here, together with other data from the literature, unequivocally established oxidative-stress-inducing effects of malathion in gilthead seabream Sparus aurata. It is also concluded antioxidants employed (SOD, CAT and GPX) changed significantly a long time before histopathological alterations of gills became evident. Consequently, these antioxidant enzymes may be highly recommended as early-warning bioindicators of environmental pollution by malathion in the areas where it is proposed to be used in pest control activities.[1]References
- Time course variations of antioxidant enzyme activities and histopathology of gilthead seabream gills exposed to malathion. Rosety, M., Rosety-Rodríguez, M., Ordonez, F.J., Rosety, I. Histol. Histopathol. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg