The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Novel type I interferon IL-28A suppresses hepatitis C viral RNA replication.

Interferon alpha (IFN-alpha)-based therapy is the currently approved treatment for chronic hepatitis C viral infection. The sustained antiviral response rate is approximately 50% for genotype-1 infection. The major challenge to the HCV community is to improve antiviral efficacy and to reduce the side effects typically seen in IFNalpha-based therapy. One of the strategies is to identify new interferons, which may have better efficacy and less undesirable side effects. In this report, we examined the role of IL-28A ( IFN lambda2), a novel type I IFN, in suppression of human hepatitis C viral RNA replication. We have cloned both the human genomic DNA and cDNA of IL-28A, and evaluated their biological activity using HCV RNA replicon cell culture system. The results show that IL-28A effectively inhibits HCV subgenomic RNA replication in a dose-dependent manner. Treatment of human hepatoma cells with IL-28A activates the JAK-STAT signaling pathway and induces the expression of some interferon-stimulated genes (ISGs), such as 6-16 and 1-8U. We also demonstrate that IL-28A induces expression of HLA class I antigens in human hepatoma cells. Moreover, IL-28A appears to specifically suppress HCV IRES-mediated translation. Although IL-28A receptor shares one subunit with the IL-10 receptor, IL-10 treatment has no detectable effect on IL-28A-induced antiviral activity. Interestingly, IL-28A can synergistically enhance IFNalpha antiviral efficacy. Our results suggest that IL-28A antiviral activity is associated with the activation of the JAK-STAT signaling pathway and expression of ISGs. The effectiveness of IL-28A antiviral activity and its synergistic effect on IFN-alpha indicate that IL-28A may be potentially used to treat HCV chronic infection.[1]

References

  1. Novel type I interferon IL-28A suppresses hepatitis C viral RNA replication. Zhu, H., Butera, M., Nelson, D.R., Liu, C. Virol. J. (2005) [Pubmed]
 
WikiGenes - Universities