Developments in ghrelin biology and potential clinical relevance.
The spiropiperidine, MK0677, has been exploited to characterize and expression clone the growth hormone secretagogue receptor (GHS-R). Cloning of this receptor led to identification of its natural ligands, ghrelin and adenosine. Targeted disruption of the Ghsr gene demonstrated unambiguously that the GH- releasing and orexigenic properties of ghrelin are dependent on Ghsr expression and that the orexigenic signal is mediated through neuropeptide Y and agouti-related peptide neurons. This review summarizes new developments in our understanding of the physiological roles of ghrelin and its receptor (GHS-R). Recent discoveries of the effects of ghrelin on the thymus and proinflammatory and chemotactic cytokine pathways stimulate renewed interest in potential clinical applications, which include age-associated disorders, such as metabolic disease, sarcopenia, congestive heart failure, atherosclerosis and anorexia.[1]References
- Developments in ghrelin biology and potential clinical relevance. Smith, R.G., Jiang, H., Sun, Y. Trends Endocrinol. Metab. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg