Olfactory sensitivity for aliphatic alcohols and aldehydes in spider monkeys (Ateles geoffroyi).
Using a conditioning paradigm, the olfactory sensitivity of five spider monkeys for homologous series of aliphatic 1-alcohols (1-propanol to 1-octanol) and n-aldehydes (n-butanal to n-nonanal) was investigated. With the exception of 1-propanol, the animals significantly discriminated concentrations below 1 ppm from the odorless solvent, and in several cases, individual monkeys even demonstrated detection thresholds below 10 ppb. The results showed 1) spider monkeys to have a well-developed olfactory sensitivity for both substance classes, which for the majority of alcohols tested matches or even is better than that of the rat, and 2) a significant negative correlation between perceptibility in terms of olfactory detection thresholds and carbon chain length of the alcohols, but not of the aldehydes tested. These findings lend further support to the growing body of evidence suggesting that between-species comparisons of the number of functional olfactory receptor genes or of neuroanatomical features are poor predictors of olfactory performance, and that general labels such as "microsmat" or "macrosmat" (which are usually based on allometric comparisons of olfactory brain structures) are inadequate to describe a species' olfactory capabilities.[1]References
- Olfactory sensitivity for aliphatic alcohols and aldehydes in spider monkeys (Ateles geoffroyi). Laska, M., Rivas Bautista, R.M., Hernandez Salazar, L.T. Am. J. Phys. Anthropol. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg