The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Survival of genetically modified and self-cloned strains of commercial baker's yeast in simulated natural environments: environmental risk assessment.

Although genetic engineering techniques for baker's yeast might improve the yeast's fermentation characteristics, the lack of scientific data on the survival of such strains in natural environments as well as the effects on human health prevent their commercial use. Disruption of acid trehalase gene (ATH1) improves freeze tolerance, which is a crucial characteristic in frozen-dough baking. In this study, ATH1 disruptants constructed by genetic modification (GM) and self-cloning (SC) techniques were used as models to study such effects because these strains have higher freeze tolerance and are expected to be used commercially. Behavior of the strains in simulated natural environments, namely, in soil and water, was studied by measuring the change in the number of viable cells and in the concentration of DNA that contains ATH1 loci. Measurements were made using a real-time PCR method during 40 days of cultivation. Results showed that the number of viable cells of GM and SC strains decreased in a time-dependent manner and that the decrease rate was nearly equal to or higher than that for wild-type (WT) yeast. For all three strains (SC, GM, and WT) in the two simulated natural environments (water and soil), the DNA remained longer than did viable cells but the decrease patterns of either the DNA or the viable cells of SC and GM strains had tendencies similar to those of the WT strain. In conclusion, disruption of ATH1 by genetic engineering apparently does not promote the survival of viable cells and DNA in natural environments.[1]


WikiGenes - Universities