The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Oxidant-mediated activation of cytosolic phospholipase a(2) in pulmonary endothelium: role of protein kinase C alpha and a pertussis toxin-sensitive protein.

The authors have previously demonstrated that the oxidant t-buOOH stimulates phospholipase A(2) (PLA(2)) activity in bovine pulmonary artery endothelial cells (S. Chakraborti et al. American Journal of Physiology, 257, L430-L437, 1989). Herein, the authors sought to investigate the mechanism by which t-buOOH stimulates PLA(2) activity and the role of protein kinase C (PKC) in this scenario. Treatment of bovine pulmonary artery endothelial cells with t-buOOH stimulated an aprotinin-sensitive protease activity, PKC activity, and PLA(2) activity in the cell membrane. Pretreatment with intracellular Ca(2+) chelator (BAPTA-AM), PKCalpha inhibitor (Go6976), cPLA(2) inhibitor (AACOCF(3)), and pertussis toxin prevented t-buOOH-stimulated PLA(2) activity. Immunoblot studies with aprotinin, cPLA(2), PKCalpha, and Gialpha antibodies revealed their presence in the endothelial membrane. Immunoblot studies of the cell membrane isolated from t-buOOH-stimulated cells with cPLA(2) and PKCalpha antibodies elicited an apparent increase in their immunoreactive protein profiles along with an additional 47-kDa immunoreactive fragment in the membrane. t-buOOH caused Gialpha phosphorylation in the membrane and pretreatment with Go6976 prevented the phosphorylation. Overall, these results suggest that t-buOOH stimulates an aprotinin-sensitive protease activity that proteolytically activates PKCalpha and that subsequently phosphorylates a pertussis toxin-sensitive protein, resulting in the stimulation of cPLA(2) activity in the cell membrane.[1]

References

 
WikiGenes - Universities