The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Chemo-enzymatic synthesis of eel calcitonin glycosylated at two sites with the same and different carbohydrate structures.

Naturally occurring glycopeptides and glycoproteins usually contain more than one glycosylation site, and the structure of the carbohydrate attached is often different from site to site. Therefore, synthetic methods for preparing peptides and proteins that are glycosylated at multiple sites, possibly with different carbohydrate structures, are needed. Here, we report a chemo-enzymatic approach for accomplishing this. Complex-type oligosaccharides were introduced to the calcitonin derivatives that contained two N-acetyl-D-glucosamine (GlcNAc) residues at different sites by treatment with Mucor hiemalis endo-beta-N-acetylglucosaminidase. Using this enzymatic transglycosylation reaction, three glycopeptides were produced, a calcitonin derivative with the same complex-type carbohydrate at two sites, and two calcitonin derivatives each with one complex-type carbohydrate and one GlcNAc. Starting from the derivatives with one complex-type carbohydrate and one GlcNAc, a high-mannose-type oligosaccharide was successfully transferred to the remaining GlcNAc using another endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae. Thus, we were able to obtain glycopeptides containing not only two complex-type carbohydrates, but also both complex and high-mannose-type oligosaccharides in a single molecule. Using the resultant glycosylated calcitonin derivatives, the effects of di-N-glycosylation on the structure and the activity of calcitonin were studied. The effect appeared to be predictable from the results of mono-N-glycosylated calcitonin derivatives.[1]

References

  1. Chemo-enzymatic synthesis of eel calcitonin glycosylated at two sites with the same and different carbohydrate structures. Haneda, K., Takeuchi, M., Tagashira, M., Inazu, T., Toma, K., Isogai, Y., Hori, M., Kobayashi, K., Takeuchi, M., Takegawa, K., Yamamoto, K. Carbohydr. Res. (2006) [Pubmed]
 
WikiGenes - Universities