Dominant negative FTase (DNFTalpha) inhibits ERK5, MEF2C and CREB activation in adipogenesis.
We recently demonstrated that dominant negative FTase/GGTase I alpha-subunit-inhibited (DNFTalpha-inhibited) insulin-stimulated adipocytes differentiation. DNFTalpha interferes with Ras prenylation whereby ERK1/2, CREB and the differentiation cascade are downregulated. To further investigate prenylation in adipogenesis, we examined DNFTalpha's ability to inhibit activation of ERK5, MEF2C and CREB. DNFTalpha-inhibited insulin-stimulated expression, activation and nuclear translocation of ERK5. Inhibition was associated with decreased activation of MEF2C and CREB by 80 and 78%, respectively. PD98059 did not block activation of ERK5 and MEF2C, but inhibited CREB phosphorylation by 90%. ERK5 siRNA-inhibited MEF2C activation, whereas it reduced CREB phosphorylation only 50%. Pre-adipocytes expressing DNFTalpha or treated with PD98059 were unable to differentiate to mature adipocytes, whereas pre-adipocytes transfected with ERK5 siRNA showed moderate inhibition of insulin-induced adipogenesis. Taken together, these data suggest that prenylation plays a critical role in insulin-stimulated adipogenesis, and that the ERK5 plays an important, but less crucial role in adipogenesis as compared to ERK1/2.[1]References
- Dominant negative FTase (DNFTalpha) inhibits ERK5, MEF2C and CREB activation in adipogenesis. Sharma, G., Goalstone, M.L. Mol. Cell. Endocrinol. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg