The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Mapk7  -  mitogen-activated protein kinase 7

Mus musculus

Synonyms: BMK-1, BMK1, Big MAP kinase 1, Bmk1, ERK-5, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Mapk7


High impact information on Mapk7


Biological context of Mapk7


Anatomical context of Mapk7


Associations of Mapk7 with chemical compounds

  • A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter: a role for c-Jun NH2-terminal kinase, p38s, and extracellular signal-regulated kinase 5 [13].
  • ERK5 activity is increased by agents known to activate receptor tyrosine kinases, G-protein coupled receptors, and stress response pathways [11].
  • Western blot analysis of the myocardium revealed that activation of extracellular signal-regulated kinases (ERK) 1/2 and ERK5 by Ang II stimulation were lower in ARKO mice than those of WT mice [14].
  • When ERK5 was inhibited by the specific inhibitor PD184352 or knocked down by ERK5 siRNA, reduction of Oct-4 and SSEA-1 expression was rescued [7].
  • The level of BMK1 activation markedly decreased by replacement of tyrosine 1062 with phenylalanine (designated Y1062F) in RET, indicating the importance of downstream signaling via tyrosine 1062 [3].
  • We show that the activated kinase activity of ERK5 is required for the C-terminal-half to enhance the AP-1 activity, and that the activated ERK5 undergoes autophosphorylation on its most C-terminal region [15].

Physical interactions of Mapk7


Enzymatic interactions of Mapk7


Regulatory relationships of Mapk7


Other interactions of Mapk7

  • We generated cardiac-specific constitutively active form of the MEK5alpha (CA-MEK5alpha transgenic (Tg) mice), and observed a 3 to 4-fold increase in endogenous BMK1 activation and hyperphosphorylation of connexin 43 in the ventricles of the Tg compared to wild-type mice [1].
  • Moreover, in addition to JNK, ERK5, p38alpha, and p38gamma were found to stimulate the c-jun promoter by acting on distinct responsive elements [13].
  • These results demonstrate the novel and important, MEKK2-dependent role of MEF2C in induction of c-Jun expression in mast cells activated through FcepsilonRI, a pathway distinct from that involving MEKK2-MEK5-ERK5 in the regulation of mast cell cytokine production [9].
  • ERK1/2 are also activated by cAMP in NIH3T3 cells, but not in C2C12 myoblasts, demonstrating differential regulation of ERK5 and ERK1/2 by cAMP [11].
  • ERK5-deficient embryos are embryonic lethal due to defects in angiogenesis and cardiovascular development [18].

Analytical, diagnostic and therapeutic context of Mapk7

  • RESULTS: To help determine the function of ERK5 we have used gene targeting to inactivate this gene in mice [19].


  1. Activation of big MAP kinase 1 (BMK1/ERK5) inhibits cardiac injury after myocardial ischemia and reperfusion. Cameron, S.J., Itoh, S., Baines, C.P., Zhang, C., Ohta, S., Che, W., Glassman, M., Lee, J.D., Yan, C., Yang, J., Abe, J. FEBS Lett. (2004) [Pubmed]
  2. Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. Hayashi, M., Kim, S.W., Imanaka-Yoshida, K., Yoshida, T., Abel, E.D., Eliceiri, B., Yang, Y., Ulevitch, R.J., Lee, J.D. J. Clin. Invest. (2004) [Pubmed]
  3. Activation of BMK1 via tyrosine 1062 in RET by GDNF and MEN2A mutation. Hayashi, Y., Iwashita, T., Murakamai, H., Kato, Y., Kawai, K., Kurokawa, K., Tohnai, I., Ueda, M., Takahashi, M. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
  4. Undermining the endothelium by ablation of MAPK-MEF2 signaling. Olson, E.N. J. Clin. Invest. (2004) [Pubmed]
  5. Targeted deletion of mek5 causes early embryonic death and defects in the extracellular signal-regulated kinase 5/myocyte enhancer factor 2 cell survival pathway. Wang, X., Merritt, A.J., Seyfried, J., Guo, C., Papadakis, E.S., Finegan, K.G., Kayahara, M., Dixon, J., Boot-Handford, R.P., Cartwright, E.J., Mayer, U., Tournier, C. Mol. Cell. Biol. (2005) [Pubmed]
  6. Src-dependent ERK5 and Src/EGFR-dependent ERK1/2 activation is required for cell proliferation by asbestos. Scapoli, L., Ramos-Nino, M.E., Martinelli, M., Mossman, B.T. Oncogene (2004) [Pubmed]
  7. LIGHT induces differentiation of mouse embryonic stem cells associated with activation of ERK5. Zou, G.M., Chen, J.J., Ni, J. Oncogene (2006) [Pubmed]
  8. Dominant negative FTase (DNFTalpha) inhibits ERK5, MEF2C and CREB activation in adipogenesis. Sharma, G., Goalstone, M.L. Mol. Cell. Endocrinol. (2005) [Pubmed]
  9. MEF2C regulates c-Jun but not TNF-alpha gene expression in stimulated mast cells. Wei, X., Sun, W., Fan, R., Hahn, J., Joetham, A., Li, G., Webb, S., Garrington, T., Dakhama, A., Lucas, J., Johnson, G.L., Gelfand, E.W. Eur. J. Immunol. (2003) [Pubmed]
  10. Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Regan, C.P., Li, W., Boucher, D.M., Spatz, S., Su, M.S., Kuida, K. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  11. Cell condition-dependent regulation of ERK5 by cAMP. Pearson, G.W., Cobb, M.H. J. Biol. Chem. (2002) [Pubmed]
  12. MEKK2 regulates the coordinate activation of ERK5 and JNK in response to FGF-2 in fibroblasts. Kesavan, K., Lobel-Rice, K., Sun, W., Lapadat, R., Webb, S., Johnson, G.L., Garrington, T.P. J. Cell. Physiol. (2004) [Pubmed]
  13. A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter: a role for c-Jun NH2-terminal kinase, p38s, and extracellular signal-regulated kinase 5. Marinissen, M.J., Chiariello, M., Pallante, M., Gutkind, J.S. Mol. Cell. Biol. (1999) [Pubmed]
  14. Androgen receptor gene knockout male mice exhibit impaired cardiac growth and exacerbation of angiotensin II-induced cardiac fibrosis. Ikeda, Y., Aihara, K., Sato, T., Akaike, M., Yoshizumi, M., Suzaki, Y., Izawa, Y., Fujimura, M., Hashizume, S., Kato, M., Yagi, S., Tamaki, T., Kawano, H., Matsumoto, T., Azuma, H., Kato, S., Matsumoto, T. J. Biol. Chem. (2005) [Pubmed]
  15. Activation of a C-terminal transcriptional activation domain of ERK5 by autophosphorylation. Morimoto, H., Kondoh, K., Nishimoto, S., Terasawa, K., Nishida, E. J. Biol. Chem. (2007) [Pubmed]
  16. A novel mitogen-activated protein kinase docking site in the N terminus of MEK5alpha organizes the components of the extracellular signal-regulated kinase 5 signaling pathway. Seyfried, J., Wang, X., Kharebava, G., Tournier, C. Mol. Cell. Biol. (2005) [Pubmed]
  17. PB1 domains of MEKK2 and MEKK3 interact with the MEK5 PB1 domain for activation of the ERK5 pathway. Nakamura, K., Johnson, G.L. J. Biol. Chem. (2003) [Pubmed]
  18. Functions of MAP kinases: insights from gene-targeting studies. Kuida, K., Boucher, D.M. J. Biochem. (2004) [Pubmed]
  19. Knockout of ERK5 causes multiple defects in placental and embryonic development. Yan, L., Carr, J., Ashby, P.R., Murry-Tait, V., Thompson, C., Arthur, J.S. BMC Dev. Biol. (2003) [Pubmed]
WikiGenes - Universities