The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Control of MEF2 transcriptional activity by coordinated phosphorylation and sumoylation.

A eukaryotic protein is often subject to regulation by multiple modifications like phosphorylation, acetylation, ubiquitination, and sumoylation. How these modifications are coordinated in vivo is an important issue that is poorly understood but is relevant to many biological processes. We recently showed that human MEF2D (myocyte enhancer factor 2D) is sumoylated on Lys-439. Adjacent to the sumoylation motif is Ser-444, which like Lys-439 is highly conserved among MEF2 proteins from diverse species. Here we present [corrected] several lines of evidence to demonstrate that Ser-444 of MEF2D is required for sumoylation of Lys-439. Histone deacetylase 4 (HDAC4) stimulated this modification by acting through Ser-444. In addition, phosphorylation of Ser-444 by Cdk5, a cyclin-dependent kinase known to inhibit MEF2 transcriptional activity, stimulated sumoylation. Opposing the actions of HDAC4 and Cdk5, calcineurin (also known as protein phosphatase 2B) dephosphorylated Ser-444 and inhibited sumoylation of Lys-439. This phosphatase, however, exerted minimal effects on the phosphorylation catalyzed by ERK5, an extracellular signal-regulated kinase known to activate MEF2D. These results identify [corrected] an essential role for Ser-444 in MEF2D sumoylation and reveal [corrected] a novel mechanism by which calcineurin selectively "edits" phosphorylation at different sites, thereby reiterating that interplay between different modifications represents a general mechanism for coordinated regulation of eukaryotic protein functions in vivo.[1]

References

  1. Control of MEF2 transcriptional activity by coordinated phosphorylation and sumoylation. Grégoire, S., Tremblay, A.M., Xiao, L., Yang, Q., Ma, K., Nie, J., Mao, Z., Wu, Z., Giguère, V., Yang, X.J. J. Biol. Chem. (2006) [Pubmed]
 
WikiGenes - Universities