The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis.

Granulocyte colony-stimulating factor (G-CSF), alone or in combination with stem cell factor (SCF), can improve hemodynamic cardiac function after myocardial infarction. Apart from impairing the pump function, myocardial infarction causes an enhanced vulnerability to ventricular arrhythmias. Therefore, we investigated the electrophysiological effects of G-CSF/SCF and the underlying cellular events in a murine infarction model. G-CSF/SCF improved cardiac output after myocardial infarction. Although G-CSF/SCF led to a twofold increased, potentially proarrhythmic homing of bone marrow (BM)-derived cells to the area of infarction, <1% of these cells adopted a cardial phenotype. Inducibility of ventricular tachycardias during programmed stimulation was reduced 5 wk after G-CSF/SCF treatment. G-CSF/SCF increased cardiomyocyte diameter, arteriogenesis, and expression of connexin43 in the border zone of the infarction. An enhanced expression of the G-CSF receptor demonstrated in cardiomyocytes and other cell types of the infarcted myocardium indicates a sensitization of the heart to direct influences of this cytokine. In addition to paracrine effects potentially caused by the increased homing of BM-derived cells, these might contribute to the therapeutic effects of G-CSF.[1]

References

  1. G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. Kuhlmann, M.T., Kirchhof, P., Klocke, R., Hasib, L., Stypmann, J., Fabritz, L., Stelljes, M., Tian, W., Zwiener, M., Mueller, M., Kienast, J., Breithardt, G., Nikol, S. J. Exp. Med. (2006) [Pubmed]
 
WikiGenes - Universities