Effects of human soluble epoxide hydrolase polymorphisms on isoprenoid phosphate hydrolysis.
Soluble epoxide hydrolase (sEH) is highly expressed in human liver and contains a C-terminal epoxide hydrolase activity and an N-terminal phosphatase activity. Endogenous C-terminal hydrolase substrates include arachidonic acid epoxides, however, data are limited regarding possible endogenous substrates for the N-terminal phosphatase. Possible sEH N-terminal substrates include isoprenoid phosphate precursors of cholesterol biosynthesis and protein isoprenylation. Here, we report the kinetic analysis for a range of sEH isoprenoid substrates. We also provide an analysis of the effects of human sEH polymorphisms on isoprenoid hydrolysis. Interestingly, the Arg287Gln polymorphism recently suggested to be involved in hypercholesterolemia was found to possess a higher isoprenoid phosphatase activity than the wild type sEH. Consistent with the finding of isoprenoid phosphates as substrates for sEH, we identified isoprenoid-derived N-terminal inhibitors with IC50 values ranging from 0.84 (+/-0.9) to 55.1 (+/-30.7) microM. Finally, we evaluated the effects of the different isoprenoid compounds on the C-terminal hydrolase activity.[1]References
- Effects of human soluble epoxide hydrolase polymorphisms on isoprenoid phosphate hydrolysis. Enayetallah, A.E., Grant, D.F. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg