Suitability of different photosynthetic organisms for an extraterrestrial biological life support system.
In the present era of intensive space and planetary research, efficient life support systems (LSSs) are needed to maintain suitable living conditions when humans move into space, i.e. away from the Earth's atmosphere. Thus far, such suitable conditions on various space flights and on the space stations (Mir and the International Space Station) have been maintained solely via physical and chemical means (transport of O2, H2O and food from the Earth, cleaning and recycling of air and water). However, for long-duration missions to distant destinations, such as exploratory missions to Mars, biological life support systems (BLSSs) may be needed to convert local CO2 and H2O to O2, and to food. As on earth, this conversion process would need to be based on photosynthesis. Use of higher plants and microalgae as BLSS organisms has been intensively studied. Here we review the growth requirements of these two types of photosynthetic organisms, with particular attention to their suitability for use in harsh Martian conditions, i.e. low temperatures, low atmospheric pressure, high CO2 concentration, high UV radiation and dryness.[1]References
- Suitability of different photosynthetic organisms for an extraterrestrial biological life support system. Lehto, K.M., Lehto, H.J., Kanervo, E.A. Res. Microbiol. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg