The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Distinct receptor activity-modifying protein domains differentially modulate interaction with calcitonin receptors.

Calcitonin receptors (CTRs) dimerize with receptor activity-modifying proteins (RAMPs) to generate high-affinity amylin ( AMY) receptors; however, the relative contribution of individual RAMP domains to the formation of AMY receptors is poorly understood. We have used chimeras between RAMP1 and RAMP2 that specifically exchanged the N-terminal, transmembrane, or C-terminal domain and examined these in assays of [(125)I]amylin binding or peptide-induced cAMP signaling in COS-7 cells transiently transfected with wild-type or chimeric RAMPs and human CTRa. The specificity of peptides in competition for [(125)I]amylin binding was principally dictated by the N-terminal domain present in the chimeras; however, the maximal level of binding induced was dictated by the transmembrane domain present. This extended previous data (Zumpe et al., 2000) to provide a distinction between the transmembrane domain and the C terminus in this function. In contrast to the effects on binding, each of the RAMP domains played a role in the signaling phenotype of the receptors. In particular, the potency of calcitonin gene-related peptide ( CGRP) was most influenced by the C-terminal domain present, in which the presence of the RAMP1 C-terminal domain led to increased potency over CTRa alone, whereas chimeras with the RAMP2 C-terminal domain did not induce increased CGRP potency. The data provide additional support for the importance of the N terminus in determining binding affinity but reveal a prominent role of the transmembrane domain in the strength of amylin binding and a unique role for the C terminus in signaling by peptides to stimulate cAMP production.[1]

References

  1. Distinct receptor activity-modifying protein domains differentially modulate interaction with calcitonin receptors. Udawela, M., Christopoulos, G., Tilakaratne, N., Christopoulos, A., Albiston, A., Sexton, P.M. Mol. Pharmacol. (2006) [Pubmed]
 
WikiGenes - Universities