5-HT(1A) receptors in endogenous regulation of neuropathic hypersensitivity in the rat.
The role of medullary and spinal 5-HT(1A) receptors in endogenous regulation of neuropathic hypersensitivity was studied. When administered in the rostroventromedial medulla or subcutaneously, WAY-100635, a 5-HT(1A) receptor antagonist, attenuated mechanical hypersensitivity in rats with a spinal nerve injury. Thermal or mechanical nociception outside of the injured area was not influenced by medial medullary or subcutaneous administration of WAY-100635. Intrathecal administration of WAY-100635 had no significant effect on pain-related behavior. Suppression of mechanical hypersensitivity induced by medial medullary administration of WAY-100635 was reversed by intrathecal administration of WAY-100635 or atipamezole, an alpha2-adrenoceptor antagonist, but not by naloxone, an opioid receptor antagonist. The results indicate that endogenous release of 5-HT, via action on medial medullary 5-HT(1A) receptors, tonically suppresses descending inhibition in neuropathic animals. Following medial medullary administration of a 5-HT(1A) receptor antagonist, descending pain regulatory pathways are disinhibited. This leads to selective attenuation of neuropathic hypersensitivity, due to action on spinal 5-HT(1A) receptors and alpha2-adrenoceptors.[1]References
- 5-HT(1A) receptors in endogenous regulation of neuropathic hypersensitivity in the rat. Wei, H., Pertovaara, A. Eur. J. Pharmacol. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg