The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Spinal Nerves

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Spinal Nerves

 

High impact information on Spinal Nerves

  • In a complementary study, TLR4 antisense oligodeoxynucleotide (ODN) was administered intrathecally to L5 spinal nerve injured rats to reduce the expression of spinal TLR4 [6].
  • 5. (i) In the nervous system, CRABP transcripts were found in the mantle layer of the dorsal spinal cord and hindbrain and in the marginal layer of the midbrain, whereas CRBP transcripts were found in the ependymal and mantle layer of the ventral spinal cord and of the forebrain as well as in the spinal nerves and the roof plate of the spinal cord [7].
  • (iii) The LHRH-like material is specifically distributed in those spinal nerves that contain axons that initiate the slow noncholinergic synaptic responses [8].
  • The most prominent defect was lack of midline fusion of the rostral neural tube, producing a cranial bilobular appearance and attenuation of cranial and spinal nerve development [9].
  • At embryonic day 6, Cek8 expression becomes concentrated to the ventral portion of the spinal nerves, suggesting a role in axonogenesis of specific subsets of neurons [10].
 

Chemical compound and disease context of Spinal Nerves

 

Biological context of Spinal Nerves

 

Anatomical context of Spinal Nerves

 

Associations of Spinal Nerves with chemical compounds

  • Thus, dexamethasone is not superior to placebo for either early or long-term relief of lumbosacral radicular pain, but may reduce pain evoked by stretch of acutely inflamed spinal nerve roots [23].
  • Effects of systemic carbamazepine and gabapentin on spinal neuronal responses in spinal nerve ligated rats [24].
  • Spinal morphine itself produced a minimal reduction in allodynia in rats following spinal nerve ligation and this was enhanced in an additive manner by spinal adenosine [25].
  • Mechanical allodynia, defined by a significant drop in paw withdrawal threshold force following spinal nerve ligation (L5-L6) in rats, can be reversed by one 30min lidocaine infusion at a constant plasma concentration as low as 1-2 microg/ml, an effect that is still present when the rats are tested days and weeks afterwards [26].
  • Peripheral and central sites of action for A-85380 in the spinal nerve ligation model of neuropathic pain [27].
 

Gene context of Spinal Nerves

 

Analytical, diagnostic and therapeutic context of Spinal Nerves

  • Here we have studied the effect of spinal administration of mexiletine (10-1000 microg) on the spontaneous and peripherally evoked responses of spinal neurones of nerve injured (selective ligation of spinal nerves L5-L6; SNL) rats [32].
  • This study investigated the efficacy and mechanisms of vitamin E analgesia in a rat model of neuropathic pain produced by spinal nerve ligation [33].
  • In the chronic constriction injury (CCI) and spinal nerve ligation models of neuropathic pain, hindpaw mechanical allodynia was significantly attenuated by fluoxetine and particularly by bupropion [34].
  • Furthermore, L5 ventral rhizotomy up-regulated nerve growth factor (NGF) protein in small to medium diameter neurons in the L5 DRG and also in ED-1-positive cells in the L5 spinal nerve, suggesting that NGF synthesized in the degenerative fibers is transported to the L5 DRG and increases BDNF synthesis [35].
  • We studied the effect of chemical sympathectomy by 6-hydroxydopamine (6-OHDA) on pain behavior and alpha(2)-adrenergic antinociception in rats with a spinal nerve ligation-induced neuropathy [36].

References

  1. Cryptorchidism and homeotic transformations of spinal nerves and vertebrae in Hoxa-10 mutant mice. Rijli, F.M., Matyas, R., Pellegrini, M., Dierich, A., Gruss, P., Dollé, P., Chambon, P. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  2. Loss of the NF2 gene and merlin occur by the tumorlet stage of schwannoma development in neurofibromatosis 2. Stemmer-Rachamimov, A.O., Ino, Y., Lim, Z.Y., Jacoby, L.B., MacCollin, M., Gusella, J.F., Ramesh, V., Louis, D.N. J. Neuropathol. Exp. Neurol. (1998) [Pubmed]
  3. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. Raghavendra, V., Tanga, F., DeLeo, J.A. J. Pharmacol. Exp. Ther. (2003) [Pubmed]
  4. ATF3 expression in L4 dorsal root ganglion neurons after L5 spinal nerve transection. Shortland, P.J., Baytug, B., Krzyzanowska, A., McMahon, S.B., Priestley, J.V., Averill, S. Eur. J. Neurosci. (2006) [Pubmed]
  5. 5-HT(1A) receptors in endogenous regulation of neuropathic hypersensitivity in the rat. Wei, H., Pertovaara, A. Eur. J. Pharmacol. (2006) [Pubmed]
  6. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Tanga, F.Y., Nutile-McMenemy, N., DeLeo, J.A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  7. Spatial and temporal pattern of expression of the cellular retinoic acid-binding protein and the cellular retinol-binding protein during mouse embryogenesis. Perez-Castro, A.V., Toth-Rogler, L.E., Wei, L.N., Nguyen-Huu, M.C. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  8. A peptide as a possible transmitter in sympathetic ganglia of the frog. Jan, Y.N., Jan, L.Y., Kuffler, S.W. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  9. Vinculin knockout results in heart and brain defects during embryonic development. Xu, W., Baribault, H., Adamson, E.D. Development (1998) [Pubmed]
  10. Characterization of the expression of the Cek8 receptor-type tyrosine kinase during development and in tumor cell lines. Soans, C., Holash, J.A., Pasquale, E.B. Oncogene (1994) [Pubmed]
  11. Spinal GABA(A) and GABA(B) receptor pharmacology in a rat model of neuropathic pain. Malan, T.P., Mata, H.P., Porreca, F. Anesthesiology (2002) [Pubmed]
  12. Nitric oxide as a mediator of nucleus pulposus-induced effects on spinal nerve roots. Brisby, H., Byröd, G., Olmarker, K., Miller, V.M., Aoki, Y., Rydevik, B. J. Orthop. Res. (2000) [Pubmed]
  13. The effects of the alpha2-adrenergic agonist, dexmedetomidine, in the spinal nerve ligation model of neuropathic pain in rats. Kontinen, V.K., Paananen, S., Kalso, E. Anesth. Analg. (1998) [Pubmed]
  14. Central CO2 chemoreception in developing bullfrogs: anomalous response to acetazolamide. Taylor, B.E., Harris, M.B., Coates, E.L., Gdovin, M.J., Leiter, J.C. J. Appl. Physiol. (2003) [Pubmed]
  15. L6-S1 spinal nerve stimulation reduces micturition frequency in anaesthetized rats with cyclophosphamide-induced cystitis. Giuliano, F.A., Denys, P., Chartier-Kastler, E., Alexandre, L., Bernabe, J. BJU international. (2006) [Pubmed]
  16. Ca2+- or Mg2+-stimulated ATPase activity in bullfrog spinal nerve: relation to Ca2+ requirements for fast axonal transport. Hammerschlag, R., Bobinski, J.A. J. Neurochem. (1981) [Pubmed]
  17. Bcl-2 and GDNF delivered by HSV-mediated gene transfer after spinal root avulsion provide a synergistic effect. Natsume, A., Mata, M., Wolfe, D., Oligino, T., Goss, J., Huang, S., Glorioso, J., Fink, D.J. J. Neurotrauma (2002) [Pubmed]
  18. Vascular permeability of spinal nerve roots. A study in the rat with Evans blue and lanthanum as tracers. Pettersson, C.A., Sharma, H.S., Olsson, Y. Acta Neuropathol. (1990) [Pubmed]
  19. Spinal interleukin-6 (IL-6) inhibits nociceptive transmission following neuropathy. Flatters, S.J., Fox, A.J., Dickenson, A.H. Brain Res. (2003) [Pubmed]
  20. Virally mediated misexpression of Hoxc-6 in the cervical mesoderm results in spinal nerve truncations. Burke, A.C., Tabin, C.J. Dev. Biol. (1996) [Pubmed]
  21. Possible involvement of increase in spinal fibronectin following peripheral nerve injury in upregulation of microglial P2X4, a key molecule for mechanical allodynia. Nasu-Tada, K., Koizumi, S., Tsuda, M., Kunifusa, E., Inoue, K. Glia (2006) [Pubmed]
  22. Localization of vasoactive intestinal peptide immunoreactivity in human foetus and newborn infant spinal cord. Charnay, Y., Chayvialle, J.A., Said, S.I., Dubois, P.M. Neuroscience (1985) [Pubmed]
  23. Dexamethasone is not superior to placebo for treating lumbosacral radicular pain. Haimovic, I.C., Beresford, H.R. Neurology (1986) [Pubmed]
  24. Effects of systemic carbamazepine and gabapentin on spinal neuronal responses in spinal nerve ligated rats. Chapman, V., Suzuki, R., Chamarette, H.L., Rygh, L.J., Dickenson, A.H. Pain (1998) [Pubmed]
  25. Exogenous and endogenous adenosine enhance the spinal antiallodynic effects of morphine in a rat model of neuropathic pain. Lavand'homme, P.M., Eisenach, J.C. Pain (1999) [Pubmed]
  26. Multiple phases of relief from experimental mechanical allodynia by systemic lidocaine: responses to early and late infusions. Araujo, M.C., Sinnott, C.J., Strichartz, G.R. Pain (2003) [Pubmed]
  27. Peripheral and central sites of action for A-85380 in the spinal nerve ligation model of neuropathic pain. Rueter, L.E., Kohlhaas, K.L., Curzon, P., Surowy, C.S., Meyer, M.D. Pain (2003) [Pubmed]
  28. Hes1 and Hes5 regulate the development of the cranial and spinal nerve systems. Hatakeyama, J., Sakamoto, S., Kageyama, R. Dev. Neurosci. (2006) [Pubmed]
  29. Expression patterns of erythropoietin and its receptor in the developing spinal cord and dorsal root ganglia. Knabe, W., Sirén, A.L., Ehrenreich, H., Kuhn, H.J. Anat. Embryol. (2005) [Pubmed]
  30. Role of mitogen-activated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation. Obata, K., Yamanaka, H., Kobayashi, K., Dai, Y., Mizushima, T., Katsura, H., Fukuoka, T., Tokunaga, A., Noguchi, K. J. Neurosci. (2004) [Pubmed]
  31. Leukemia inhibitory factor induces sympathetic sprouting in intact dorsal root ganglia in the adult rat in vivo. Thompson, S.W., Majithia, A.A. J. Physiol. (Lond.) (1998) [Pubmed]
  32. A novel spinal action of mexiletine in spinal somatosensory transmission of nerve injured rats. Chapman, V., Ng, J., Dickenson, A.H. Pain (1998) [Pubmed]
  33. Analgesic effect of vitamin E is mediated by reducing central sensitization in neuropathic pain. Kim, H.K., Kim, J.H., Gao, X., Zhou, J.L., Lee, I., Chung, K., Chung, J.M. Pain (2006) [Pubmed]
  34. Anti-nociception is selectively enhanced by parallel inhibition of multiple subtypes of monoamine transporters in rat models of persistent and neuropathic pain. Pedersen, L.H., Nielsen, A.N., Blackburn-Munro, G. Psychopharmacology (Berl.) (2005) [Pubmed]
  35. Contribution of degeneration of motor and sensory fibers to pain behavior and the changes in neurotrophic factors in rat dorsal root ganglion. Obata, K., Yamanaka, H., Dai, Y., Mizushima, T., Fukuoka, T., Tokunaga, A., Yoshikawa, H., Noguchi, K. Exp. Neurol. (2004) [Pubmed]
  36. The influence of chemical sympathectomy on pain responsivity and alpha 2-adrenergic antinociception in neuropathic animals. Wei, H., Jyväsjärvi, E., Niissalo, S., Hukkanen, M., Waris, E., Konttinen, Y.T., Pertovaara, A. Neuroscience (2002) [Pubmed]
 
WikiGenes - Universities