The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Voltage-gated sodium channels in cerebellar Purkinje cells of mormyrid fish.

Cerebellar Purkinje cells of mormyrid fish differ in some morphological as well as physiological parameters from their counterparts in mammals. Morphologically, Purkinje cells of mormyrids have larger dendrites that are characterized by a lower degree of branching in the molecular layer. Physiologically, there are differences in electrophysiological response patterns that are related to sodium channel activity: first, sodium spikes in mormyrid Purkinje cells have low amplitudes, typically not exceeding 30 mV. Second, the response to climbing fiber stimulation in mormyrid Purkinje cells does not consist of a complex spike (with an initial fast sodium spike) as in mammals, but instead it consists of an all-or-none excitatory postsynaptic potential, the so-called climbing fiber response. Because of these unique properties, we have begun to characterize mormyrid Purkinje cells electrophysiologically. In this study, we provide a description of voltage-gated Na+ channels and conductances in Purkinje cells of the mormyrid fish Gnathonemus petersii. Various types of Na+ channel alpha-subunits, i.e., Nav1.1, Nav1.2, and Nav1.6, have been described in rodent Purkinje cells. Using immunohistochemical techniques, we found that these subunits are present in Purkinje cells of mormyrids. To test whether these Na+ channel subunits can mediate fast inactivating and resurgent Na+ currents in Gnathonemus Purkinje cells, we conducted patch-clamp recordings in acutely dissociated cells and in cerebellar slices. Both types of Na+ currents could be measured in rat and fish Purkinje cells. These data show that, despite prominent differences in electrophysiological response characteristics, Purkinje cells of rats and mormyrids share the same voltage-gated Na+ conductances.[1]

References

  1. Voltage-gated sodium channels in cerebellar Purkinje cells of mormyrid fish. de Ruiter, M.M., De Zeeuw, C.I., Hansel, C. J. Neurophysiol. (2006) [Pubmed]
 
WikiGenes - Universities