The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Excitatory Postsynaptic Potentials

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Excitatory Postsynaptic Potentials

  • In contrast, the baclofen-induced presynaptic depression of the excitatory postsynaptic potential elicited by CA1 afferent stimulation is resistant to the action of pertussis toxin and is not antagonized by phaclofen [1].
  • The overall LTP time course (onset latency, growth phase, and subsequent decay for both the non-NMDA and NMDA receptor-mediated EPSPs) following a brief tetanus was essentially the same over an almost 10-fold variation in release probability (measured as change in field EPSP magnitude) [2].
  • To obtain chloroplast delivery of the 43-kDa 5-enolpyruvyl 3-phosphoshikimate (EPSP) synthase of Salmonella typhimurium, we constructed fusion proteins between the bacterial EPSP synthase and the ribulose bisphosphate carboxylase small subunit [3].
  • 3 Bethanechol (10 microM) depressed the amplitude of fast excitatory postsynaptic potentials (e.p.s.ps) recorded in Ca2+-high Mg2+ solution, without depolarizing ganglion cells [4].
  • Although ouabain induced a depolarization similar to that of anoxia, it did not affect EPSP amplitude.(ABSTRACT TRUNCATED AT 250 WORDS)[5]
 

High impact information on Excitatory Postsynaptic Potentials

 

Chemical compound and disease context of Excitatory Postsynaptic Potentials

 

Biological context of Excitatory Postsynaptic Potentials

 

Anatomical context of Excitatory Postsynaptic Potentials

 

Associations of Excitatory Postsynaptic Potentials with chemical compounds

 

Gene context of Excitatory Postsynaptic Potentials

  • Frequency facilitation of field excitatory postsynaptic potentials, a form of short-term synaptic plasticity assessed in hippocampal slices, was reduced in mossy fiber-CA3 cell synapses of galanin-overexpressing mice, indicating suppressed glutamate release [30].
  • NPY and PYY inhibited both the slow 5-HT1A receptor-mediated IPSP and the alpha 1-adrenoceptor-mediated slow EPSP while not affecting the fast, amino acid-mediated synaptic responses [31].
  • Electrophysiological studies demonstrated that ethanol inhibited NMDAR field excitatory postsynaptic potential slope and amplitude to a similar degree as previously reported by our laboratory and others (Schummers, J., Bentz, S., and Browning, M. D. (1997) Alcohol Clin. Exp. Res. 21, 404-408) [32].
  • To examine whether FAD-linked mutations in PS1 directly influence the physiology of learning and memory, we measured the field excitatory postsynaptic potential (fEPSP) at the Schaffer collateral-CA1 synapse in hippocampal slices [33].
  • NPY 16-36 had no effect on extracellular field potentials, but still significantly inhibited excitatory postsynaptic potential amplitudes [34].
 

Analytical, diagnostic and therapeutic context of Excitatory Postsynaptic Potentials

References

  1. Pre- and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties. Dutar, P., Nicoll, R.A. Neuron (1988) [Pubmed]
  2. Effect of adenosine-induced changes in presynaptic release probability on long-term potentiation in the hippocampal CA1 region. Asztely, F., Xiao, M.Y., Wigström, H., Gustafsson, B. J. Neurosci. (1994) [Pubmed]
  3. Chloroplast transport of a ribulose bisphosphate carboxylase small subunit-5-enolpyruvyl 3-phosphoshikimate synthase chimeric protein requires part of the mature small subunit in addition to the transit peptide. Comai, L., Larson-Kelly, N., Kiser, J., Mau, C.J., Pokalsky, A.R., Shewmaker, C.K., McBride, K., Jones, A., Stalker, D.M. J. Biol. Chem. (1988) [Pubmed]
  4. Presynaptic muscarinic receptors inhibiting active acetylcholine release in the bullfrog sympathetic ganglion. Koketsu, K., Yamada, M. Br. J. Pharmacol. (1982) [Pubmed]
  5. Anoxic depression of excitatory and inhibitory postsynaptic potentials in rat neocortical slices. Rosen, A.S., Morris, M.E. J. Neurophysiol. (1993) [Pubmed]
  6. Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Bashir, Z.I., Alford, S., Davies, S.N., Randall, A.D., Collingridge, G.L. Nature (1991) [Pubmed]
  7. NMDA receptors of dentate gyrus granule cells participate in synaptic transmission following kindling. Mody, I., Heinemann, U. Nature (1987) [Pubmed]
  8. Curare has a voltage-dependent blocking action on the glutamate synapse. Yamamoto, D., Washio, H. Nature (1979) [Pubmed]
  9. Fyn-kinase as a determinant of ethanol sensitivity: relation to NMDA-receptor function. Miyakawa, T., Yagi, T., Kitazawa, H., Yasuda, M., Kawai, N., Tsuboi, K., Niki, H. Science (1997) [Pubmed]
  10. Ethanol in low doses augments calcium-mediated mechanisms measured intracellularly in hippocampal neurons. Carlen, P.L., Gurevich, N., Durand, D. Science (1982) [Pubmed]
  11. Mechanisms underlying presynaptic inhibition through alpha 2-adrenoceptors in guinea-pig submucosal neurones. Shen, K.Z., Surprenant, A. J. Physiol. (Lond.) (1990) [Pubmed]
  12. Nordihydroguaiaretic acid blocks the synaptic component of long-term potentiation and the associated increases in release of glutamate and arachidonate: an in vivo study in the dentate gyrus of the rat. Lynch, M.A., Errington, M.L., Bliss, T.V. Neuroscience (1989) [Pubmed]
  13. Developmental shift from long-term depression to long-term potentiation at the mossy fibre synapses in the rat hippocampus. Battistin, T., Cherubini, E. Eur. J. Neurosci. (1994) [Pubmed]
  14. Potentiation of NMDA receptor-mediated transmission in turtle cerebellar granule cells by activation of metabotropic glutamate receptors. Kinney, G.A., Slater, N.T. J. Neurophysiol. (1993) [Pubmed]
  15. Effects of A1 and A2 adenosine receptor antagonists on the induction and reversal of long-term potentiation in guinea pig hippocampal slices of CA1 neurons. Fujii, S., Kato, H., Ito, K., Itoh, S., Yamazaki, Y., Sasaki, H., Kuroda, Y. Cell. Mol. Neurobiol. (2000) [Pubmed]
  16. Pentobarbital: differential postsynaptic actions on sympathetic ganglion cells. Nicoll, R.A. Science (1978) [Pubmed]
  17. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Schönbrunn, E., Eschenburg, S., Shuttleworth, W.A., Schloss, J.V., Amrhein, N., Evans, J.N., Kabsch, W. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  18. Endogenous adenosine mediates the presynaptic inhibition induced by aglycemia at corticostriatal synapses. Calabresi, P., Centonze, D., Pisani, A., Bernardi, G. J. Neurosci. (1997) [Pubmed]
  19. Mechanisms of long-term potentiation: EPSP/spike dissociation, intradendritic recordings, and glutamate sensitivity. Taube, J.S., Schwartzkroin, P.A. J. Neurosci. (1988) [Pubmed]
  20. Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex and associative memory function in a network biophysical simulation. Hasselmo, M.E., Barkai, E. J. Neurosci. (1995) [Pubmed]
  21. A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Kauer, J.A., Malenka, R.C., Nicoll, R.A. Neuron (1988) [Pubmed]
  22. Role of the carboxy-terminal region of the GluR epsilon2 subunit in synaptic localization of the NMDA receptor channel. Mori, H., Manabe, T., Watanabe, M., Satoh, Y., Suzuki, N., Toki, S., Nakamura, K., Yagi, T., Kushiya, E., Takahashi, T., Inoue, Y., Sakimura, K., Mishina, M. Neuron (1998) [Pubmed]
  23. Purinergic fast excitatory postsynaptic potentials in myenteric neurons of guinea pig: distribution and pharmacology. LePard, K.J., Messori, E., Galligan, J.J. Gastroenterology (1997) [Pubmed]
  24. Dopamine enhances both electrotonic coupling and chemical excitatory postsynaptic potentials at mixed synapses. Pereda, A., Triller, A., Korn, H., Faber, D.S. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  25. Substance P-mediated slow excitatory postsynaptic potential elicited in dorsal horn neurons in vivo by noxious stimulation. De Koninck, Y., Henry, J.L. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  26. Synaptic potentials in sympathetic ganglia: are they mediated by cyclic nucleotides? Busis, N.A., Weight, F.F., Smith, P.A. Science (1978) [Pubmed]
  27. SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Ngo-Anh, T.J., Bloodgood, B.L., Lin, M., Sabatini, B.L., Maylie, J., Adelman, J.P. Nat. Neurosci. (2005) [Pubmed]
  28. Synaptic activation of presynaptic kainate receptors on hippocampal mossy fiber synapses. Schmitz, D., Frerking, M., Nicoll, R.A. Neuron (2000) [Pubmed]
  29. Glutamate iontophoresis induces long-term potentiation in the absence of evoked presynaptic activity. Cormier, R.J., Mauk, M.D., Kelly, P.T. Neuron (1993) [Pubmed]
  30. Suppressed kindling epileptogenesis in mice with ectopic overexpression of galanin. Kokaia, M., Holmberg, K., Nanobashvili, A., Xu, Z.Q., Kokaia, Z., Lendahl, U., Hilke, S., Theodorsson, E., Kahl, U., Bartfai, T., Lindvall, O., Hökfelt, T. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  31. Neuropeptide Y selectively inhibits slow synaptic potentials in rat dorsal raphe nucleus in vitro by a presynaptic action. Kombian, S.B., Colmers, W.F. J. Neurosci. (1992) [Pubmed]
  32. Tyrosine dephosphorylation and ethanol inhibition of N-Methyl-D-aspartate receptor function. Alvestad, R.M., Grosshans, D.R., Coultrap, S.J., Nakazawa, T., Yamamoto, T., Browning, M.D. J. Biol. Chem. (2003) [Pubmed]
  33. Synaptic transmission and hippocampal long-term potentiation in transgenic mice expressing FAD-linked presenilin 1. Parent, A., Linden, D.J., Sisodia, S.S., Borchelt, D.R. Neurobiol. Dis. (1999) [Pubmed]
  34. Presynaptic inhibition by neuropeptide Y in rat hippocampal slice in vitro is mediated by a Y2 receptor. Colmers, W.F., Klapstein, G.J., Fournier, A., St-Pierre, S., Treherne, K.A. Br. J. Pharmacol. (1991) [Pubmed]
  35. Selective overproduction of 5-enol-pyruvylshikimic acid 3-phosphate synthase in a plant cell culture which tolerates high doses of the herbicide glyphosate. Smart, C.C., Johänning, D., Müller, G., Amrhein, N. J. Biol. Chem. (1985) [Pubmed]
  36. Kainate receptor-mediated inhibition of presynaptic Ca2+ influx and EPSP in area CA1 of the rat hippocampus. Kamiya, H., Ozawa, S. J. Physiol. (Lond.) (1998) [Pubmed]
  37. The effects of Ca2+, Mg2+ and kynurenate on primary afferent synaptic potentials evoked in cat spinal cord neurones in vivo. Walmsley, B., Nicol, M.J. J. Physiol. (Lond.) (1991) [Pubmed]
  38. Paroxysmal inhibitory potentials mediated by GABAB receptors in partially disinhibited rat hippocampal slice cultures. Scanziani, M., Gähwiler, B.H., Thompson, S.M. J. Physiol. (Lond.) (1991) [Pubmed]
  39. Reevaluating glyphosate as a transition-state inhibitor of EPSP synthase: identification of an EPSP synthase.EPSP.glyphosate ternary complex. Sammons, R.D., Gruys, K.J., Anderson, K.S., Johnson, K.A., Sikorski, J.A. Biochemistry (1995) [Pubmed]
 
WikiGenes - Universities