The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A developmental comparison of matrix metalloproteinase-20 and amelogenin null mouse enamel.

Mutations in both the human amelogenin and human matrix metalloproteinase-20 ( MMP20, enamelysin) genes cause amelogenesis imperfecta. Both genes have also been individually deleted from the mouse and each deletion results in defective dental enamel. Here, we compare the stage-specific progression of enamel development in continuously erupting mouse incisors from amelogenin null and MMP-20 null mice. Our goal was to closely examine differences in enamel and enamel organ structure between these mice that would allow a better understanding of each protein's function. The predominant feature of the amelogenin null incisors was the late onset of mineral deposition, with little or no protein present within the forming mineral. Conversely, the developing MMP-20 null incisors had a layer of protein between the apical surface of the ameloblasts and the forming enamel. Furthermore, the protein present within the enamel matrix was disorganized. An analysis of crystal structure demonstrated that the thin amelogenin null enamel was plate-like, while the MMP-20 null enamel had a disrupted prism pattern. These results suggest that amelogenin is essential for appositional crystal growth during the early to mid-secretory stage and for the maintenance of the crystal ribbon structure. They also suggest that MMP-20 is responsible for enamel matrix organization and for subsequent efficient reabsorption of enamel matrix proteins. Both genes are essential for the generation of full-thickness enamel containing the characteristic decussating prism pattern.[1]


  1. A developmental comparison of matrix metalloproteinase-20 and amelogenin null mouse enamel. Bartlett, J.D., Skobe, Z., Lee, D.H., Wright, J.T., Li, Y., Kulkarni, A.B., Gibson, C.W. Eur. J. Oral Sci. (2006) [Pubmed]
WikiGenes - Universities