The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The identification of genes involved in the stomatal response to reduced atmospheric relative humidity.

Stomatal pores of higher plants close in response to decreases in atmospheric relative humidity (RH). This is believed to be a mechanism that prevents the plant from losing excess water when exposed to a dry atmosphere and as such is likely to have been of evolutionary significance during the colonization of terrestrial environments by the embryophytes. We have conducted a genetic screen, based on infrared thermal imaging, to identify Arabidopsis genes involved in the stomatal response to reduced RH. Here we report the characterization of two genes, identified during this screen, which are involved in the guard cell reduced RH signaling pathway. Both genes encode proteins known to be involved in guard cell ABA signaling. OST1 encodes a protein kinase involved in ABA- mediated stomatal closure while ABA2 encodes an enzyme involved in ABA biosynthesis. These results suggest, in contrast to previously published work, that ABA plays a role in the signal transduction pathway connecting decreases in RH to reductions in stomatal aperture. The identification of OST1 as a component required in stomatal RH and ABA signal transduction supports the proposition that guard cell signaling is organized as a network in which some intracellular signaling proteins are shared among different stimuli.[1]


  1. The identification of genes involved in the stomatal response to reduced atmospheric relative humidity. Xie, X., Wang, Y., Williamson, L., Holroyd, G.H., Tagliavia, C., Murchie, E., Theobald, J., Knight, M.R., Davies, W.J., Leyser, H.M., Hetherington, A.M. Curr. Biol. (2006) [Pubmed]
WikiGenes - Universities