The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

p53-Independent apoptosis disrupts early organogenesis in embryos lacking both ataxia-telangiectasia mutated and Prkdc.

The ataxia-telangiectasia mutated (ATM) protein and the nonhomologous end-joining (NHEJ) pathway play crucial roles in sensing and repairing DNA double-strand breaks in postnatal cells. However, each pathway is dispensable for early embryogenesis. Loss of both ATM and Prkdc/Ku is synthetically lethal, but neither the developmental processes perturbed nor the mechanisms of lethality have been determined by previous reports. Here, we show that ATM and Prkdc collaborate to maintain genomic stability during gastrulation and early organogenesis, a period of rapid proliferation and hypersensitivity to DNA damage. At E7.5 to E8.5, ATM(-/-)Prkdcscid/scid embryos displayed normal proliferation indices but exhibited excessive apoptosis and elevated expression of Ser15- phosphorylated p53. Thus, this crucial regulatory residue of p53 can be phosphorylated in the absence of ATM or Prkdc. However, loss of p53 did not abrogate or delay embryonic lethality, revealing that apoptosis is p53 independent in these in ATM(-/-)Prkdcscid/scid embryos. Because mice with combined disruptions of ATM and other NHEJ components (ligase IV, Artemis) are viable, our data suggest a novel NHEJ-independent function for Prkdc/Ku that is required to complete early embryogenesis in the absence of ATM.[1]

References

  1. p53-Independent apoptosis disrupts early organogenesis in embryos lacking both ataxia-telangiectasia mutated and Prkdc. Gladdy, R.A., Nutter, L.M., Kunath, T., Danska, J.S., Guidos, C.J. Mol. Cancer Res. (2006) [Pubmed]
 
WikiGenes - Universities